Answer:
3
Explanation:
You have to mutiply the silver reaction by 3 in order to substract the electrons
100°C because all the molecules are moving the fastest past each other
Answer:
Mass = 6.183 g
Solution:
Step 1: Calculate number of moles of Boric acid using following formula,
Molarity = Moles ÷ Volume
Solving for Moles,
Moles = Molarity × Volume
Putting Values,
Moles = 0.05 mol.L⁻¹ × 2.0 L
Moles = 0.1 mol
Step 2: Calculate Mass of Boric Acid using following formula,
Moles = Mass ÷ M.mass
Solving for Mass,
Mass = Moles × M.mass
Putting values,
Mass = 0.1 mol × 61.83 g.mol⁻¹
Mass = 6.183 g
Flask used to prepare this solution is called as Volumetric flask. Take 2 L volumetric flask, add 6.183 g of Boric acid and fill it to the mark with distilled water.
Answer:
The partial pressure of neon in the vessel was 239 torr.
Explanation:
In all cases involving gas mixtures, the total gas pressure is related to the partial pressures, that is, the pressures of the individual gaseous components of the mixture. Put simply, the partial pressure of a gas is the pressure it exerts on a mixture of gases.
Dalton's law states that the total pressure of a mixture of gases is equal to the sum of the pressures that each gas would exert if it were alone. Then:
PT= P1 + P2 + P3 + P4…+ Pn
where n is the amount of gases present in the mixture.
In this case:
PT=PN₂ + PAr + PHe + PNe
where:
- PT= 987 torr
- PN₂= 44 torr
- PAr= 486 torr
- PHe= 218 torr
- PNe= ?
Replacing:
987 torr= 44 torr + 486 torr + 218 torr + PNe
Solving:
987 torr= 748 torr + PNe
PNe= 987 torr - 748 torr
PNe= 239 torr
<u><em>The partial pressure of neon in the vessel was 239 torr.</em></u>