answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vitfil [10]
2 years ago
13

Which 1 m solution would have the highest vapor pressure at a given temperature? view available hint(s) which 1 solution would h

ave the highest vapor pressure at a given temperature? li2so4 c6h12o6 nac2h3o2 kcl?
Chemistry
2 answers:
Allushta [10]2 years ago
8 0
First, we have to know that: The vapor pressure depends on the number of moles of the particles as the lower the number of moles of the particles in the solute, the higher the vapor pressure.
So,
1- Li2So4 has  2mol Li + 1Mol So4 = 3 mol solute.
2- C6H12O6 has  1mol solute (It stays as a single molecule)
3- NaC2H3O2 has  1mol Na + 1 mol C2H3O2 = 2 mol solute
4- KCl has  1mol K + 1 mol Cl = 2 mol solute
So your answer is C6H12O6 (glucose) because it has the lowest no.of moles of particles in solute so, it has the highest vapor pressure.
saveliy_v [14]2 years ago
8 0

The 1 m solution of \boxed{{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{{\text{O}}_{\text{6}}}} would have the highest vapor pressure.

Further Explanation:

Colligative properties

The properties that depend only on the concentration of solute and not on their identities are termed as colligative properties. The four such properties are listed below:

1. Relative lowering of vapor pressure

2. Elevation in boiling point

3. Depression in freezing point

4. Osmotic pressure

The decrease in the vapor pressure of the solution after the addition of non-volatile solute is called the relative lowering of vapor pressure. It depends on the amount of solute added and therefore it is a colligative property.

The expression for the relative lowering of vapor pressure is as follows:

\dfrac{{p_1^0 - {p_1}}}{{p_1^0}} = {{\text{x}}_2}   …… (1)                                                                      

Here,

p_1^0 is the pressure of the pure solvent.

p_1 is the pressure of the solution.

\text{x}_2 is the mole fraction of the solute.

The formula to calculate the mole fraction of solute is as follows:

{{\text{x}}_2} = \dfrac{{{n_2}}}{{{n_1} + {n_2}}}   …… (2)                                                                  

Here,

\text{x}_2 is the mole fraction of solute.

\text{n}_2 is the number of moles of solute.

n_1 is the number of moles of solvent.

Incorporating equation (2) in equation (1), the modified equation is as follows:

\dfrac{{p_1^0 - {p_1}}}{{p_1^0}} = \dfrac{{{n_2}}}{{{n_1} + {n_2}}}   …… (3)                                                            

Equation (3) indicates the direct relationship between the relative lowering of vapor pressure and the moles of solute particles. Higher the number of solute, more will be the lowering of vapor pressure and lower will be the vapor pressure of the solution and vice-versa.

The concentration of each given solution is the same (1 m).

The dissociation reaction of {\text{L}}{{\text{i}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} is as follows:

 {\text{L}}{{\text{i}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} \rightleftharpoons 2{\text{L}}{{\text{i}}^ + } + {\text{SO}}_4^{2 - }

Here, one mole of {\text{L}}{{\text{i}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}} dissociates to form two moles of {\text{L}}{{\text{i}}^ + } and one mole of {\text{SO}}_4^{2 - } so three moles of solute are produced.

The dissociation reaction of {\text{Na}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}}{{\text{O}}_{\text{2}}} is as follows:

 

Here, one mole of {\text{Na}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}}{{\text{O}}_{\text{2}}} dissociates to form one mole of {\text{N}}{{\text{a}}^ + } and one mole of {\text{C}}{{\text{H}}_{\text{3}}}{\text{CO}}{{\text{O}}^ - } so two moles of solute are produced.

The dissociation reaction of KCl is as follows:

{\text{KCl}} \rightleftharpoons {{\text{K}}^ + } + {\text{C}}{{\text{l}}^ - }

Here, one mole of KCl dissociates to form one mole of \text{K}^+  and one mole of \text{Cl}^- so two moles of solute are produced.

{{\text{C}}_{\text{6}}}{{\text{H}}_{12}}{{\text{O}}_6} is a nonelectrolyte so it cannot dissociate into ions and therefore it has only one mole of solute in it.

Since {{\text{C}}_{\text{6}}}{{\text{H}}_{12}}{{\text{O}}_6} has the least moles of solute (1 mol) so its solution has the highest vapor pressure at a given temperature.

Learn more:

  1. Choose the solvent that would produce the greatest boiling point elevation: brainly.com/question/8600416
  2. What is the molarity of the stock solution? brainly.com/question/2814870

Answer details:

Grade: Senior School

Chapter: Colligative properties

Subject: Chemistry

Keywords: colligative properties, relative lowering of vapor pressure, n1, n2, x2, p1, C6H12O6, KCl, CH3COO-, K+, Na+, Cl-, NaC2H3O2, Li2SO4, Li+, SO42-, highest vapor pressure, solute, non-volatile.

You might be interested in
Which of the reactions are spontaneous (favorable)? DHAP − ⇀ ↽ − glyceraldehyde-3-phosphate Δ G = 3.8 kJ / mol DHAP↽−−⇀glycerald
Tpy6a [65]

Answer:

Explanation:

In spontaneous reaction , there is decrease in Gibb's free energy .( Δ G is negative ). Out of given reaction , following reactions have negative Δ G so they are spontaneous.

C ₂ H ₄ + H ₂ Rh ( I ) −−−→ C ₂ H ₆ ,  Δ G = − 150.97 kJ / mol

C ₆ H₁₃O₉ P + ATP ⟶ C ₆ H₁₄ O₁₂ P₂ + ADP ,  Δ G = − 14.2 kJ / mol

7 0
1 year ago
Tell whether the following pairs of compounds are identical, constitutional isomers, stereoisomers, or unrelated. (a) cis-1,3-Di
Aleks04 [339]

Answer:

     (a) Constitutional Isomers

     (b) Constitutional Isomers

Explanation:

Constitutional isomers are also known with the name Structural Isomers. These are the compounds which have same chemical formula but differ in arrangement of atoms i.e. structure.

Both the compounds <em>cis-1,3-dibromocyclohexane</em> and <em>trans-1,4-dibromocyclohexane</em> have the same chemical formula C_{6} H_{10} Br_{2} but have different structure as shown in the image below.

In the second case the compounds <em>2,3-dimethylhexane</em> and <em>2,3,3-trimethylpentane</em>, both have same chemical formula C_{8} H_{18} but have different structures which is shown in the image below.

Thus it is clear that in both the groups (a) and (b) the given compounds are Constitutional Isomers.

7 0
1 year ago
¿Cuántos moles de aluminio (AI) se necesitan para formar 3,7 mol de Al2O3? 4Al(s) + 302 (g) -&gt; 2A1203 (s) ​
tatuchka [14]

Answer:

3.7 mol Al2O3 x 4 mol Al = 7.4 mol Al 2 mol Al2O3

Explanation:

8 0
1 year ago
A beaker has 0.2 M of Na2SO4. What will be the concentration of sodium and sulfate ions?
netineya [11]

The concentration of sodium and sulphate ions are [Na^+] = 0.4 M, [SO_4^2-] = 0.2 M

Explanation:

The molar concentration is defined as the number of moles of a molecule or an ion in 1 liter of a solution.

In the given solution, the concentration of the salt sodium sulphate is 0.2M. So, 0.2 moles of sodium sulphate is present in 1 liter of solution.

Assuming 100% dissociation,

1 molecule of sodium sulphate gives 2 ions of sodium and 1 ion of sulphate.

So 0.2 moles of sodium sulphate will give 0.4 moles of sodium ions and 0.2 moles of sulphate ions.

7 0
2 years ago
What is the hybridization of the central atom in each of the following? 1. Beryllium chloride 2. Nitrogen dioxide 3. Carbon tetr
Lina20 [59]

Answer :

(1) The hybridization of central atom beryllium in BeCl_2  is, sp

(2) The hybridization of central atom nitrogen in NO_2  is, sp^2

(3) The hybridization of central atom carbon in CCl_4  is, sp^3

(4) The hybridization of central atom xenon in XeF_4  is, sp^3d^2

Explanation :

Formula used  :

\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]

where,

V = number of valence electrons present in central atom

N = number of monovalent atoms bonded to central atom

C = charge of cation

A = charge of anion

Now we have to determine the hybridization of the following molecules.

(1) The given molecule is, BeCl_2

\text{Number of electrons}=\frac{1}{2}\times [2+2]=2

The number of electron pair are 2 that means the hybridization will be sp and the electronic geometry of the molecule will be linear.

(2) The given molecule is, NO_2

\text{Number of electrons}=\frac{1}{2}\times [4]=2

If the sum of the number of sigma bonds, lone pair of electrons and odd electrons present is equal to three then the hybridization will be, sp^2.

In nitrogen dioxide, there are two sigma bonds and one lone electron pair. So, the hybridization will be, sp^2.

(3) The given molecule is, CCl_4

\text{Number of electrons}=\frac{1}{2}\times [4+4]=4

The number of electron pair are 4 that means the hybridization will be sp^3 and the electronic geometry of the molecule will be tetrahedral.

(4) The given molecule is, XeF_4

\text{Number of electrons}=\frac{1}{2}\times [8+4]=6

Bond pair electrons = 4

Lone pair electrons = 6 - 4 = 2

The number of electrons are 6 that means the hybridization will be sp^3d^2 and the electronic geometry of the molecule will be octahedral.

But as there are four atoms around the central xenon atom, the fifth and sixth position will be occupied by lone pair of electrons. The repulsion between lone and bond pair of electrons is more and hence the molecular geometry will be square planar.

3 0
1 year ago
Other questions:
  • What is the bond angle in a tetrahedral molecule?
    5·2 answers
  • Calculate the amount (in grams) of kcl present in 75.0 ml of 2.10 m kcl
    5·1 answer
  • During the time 0.325 mol of an ideal gas undergoes an isothermal compression at 22.0∘c, 352 j of work is done on it by the surr
    12·1 answer
  • When 12 moles of o2 react with 1.1 mole of c10h8 what is the limiting reactant?
    5·2 answers
  • How many moles of water are in 1.23 x 10 to the 18th power water molecules
    5·2 answers
  • A hydrogen atom in an excited state emits a photon of frequency ν = 3.084 x 1015 s-1. If the electron returns to the ground stat
    11·1 answer
  • Acetone is one of the most important solvents in organic chemistry. It is used to dissolve everything from fats and waxes to air
    10·1 answer
  • Which option describes energy being released as heat?
    11·2 answers
  • Calculate the molar solubility of mercury (I) bromide, Hg2Br2, in 1.0 M KBr. The Ksp for Hg2Br2 is 5.6 X 10−23. (Hint: How would
    5·1 answer
  • Activity 1: My Incompleteness, Complete Me. Fill in the Punnett squares with the correct genotypes based on the key pictures tha
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!