Let's assume that the gas has ideal gas behavior.
Then we can use ideal gas equation,
PV = nRT
Where, <span>
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the </span></span>gas is,<span>
P = 2.8 atm = 283710 Pa
V = 98 L = 98 x 10</span>⁻³ m³<span>
T = 292 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
283710 Pa x </span>98 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 292 K
<span> n = 11.45 mol
Hence, moles of gas is </span>11.45 mol.
Answer:
sublime, melt, condense, deposit
Explanation:
1. When ice is warmed at a steady pressure 0.00512 atm, it will be sublime.
2. It will be melt when ice is warmed at a consistent pressure of 1 atm.
3. If water vapour pressure is continued to increase at a temperature of 100 C, it will be condense.
4. If water vapour pressure is continued to increase at a temperature of -50 C, it will be deposited.
Answer:
C The water had adequate nitrogen and phosphorus, so it is likely iron limited.
Explanation:
Phytoplankton are single- cell organisms that live in oceans.
They require nitrogen, phosphorus and trace amount of iron to survive.
From the scientist's results after testing the water for nitrogen and phosphorus,there are reasonable amount of these elements.
Therefore insufficient iron in the water is the reason why he could find plenty phytoplankton in the ocean.
Answer : The pressure in the flask after reaction complete is, 2.4 atm
Explanation :
To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

where,
P = final pressure in the flask = ?
R = gas constant = 0.0821 L.atm/mol.K
T = temperature = 
V = volume = 4.0 L
= moles of
= 0.20 mol
= moles of
= 0.20 mol
Now put all the given values in the above expression, we get:


Thus, the pressure in the flask after reaction complete is, 2.4 atm
Answer:
quarters
a computer that shows pictures of atoms on screen
candy with letters on one side
Explanation: