Hydrogen bonds are not like covalent bonds. They are nowhere near as strong and you can't think of them in terms of a definite number like a valence. Polar molecules interact with each other and hydrogen bonds are an example of this where the interaction is especially strong. In your example you could represent it like this:
<span>H2C=O---------H-OH </span>
<span>But you should remember that the H2O molecule will be exchanging constantly with others in the solvation shell of the formaldehyde molecule and these in turn will be exchanging with other H2O molecules in the bulk solution. </span>
<span>Formaldehyde in aqueous solution is in equilibrium with its hydrate. </span>
<span>H2C=O + H2O <-----------------> H2C(OH)2</span>
Answer: C. 25.6 kPa
Explanation:
The Gauge pressure is defined as the amount of pressure in a fluid that exceeds the amount of pressure in the atmosphere.
As such, the formula will be,
PG = PT – PA
Where,
PG is Gauge Pressure
PT is Absolute Pressure
PA is Atmospheric Pressure
Inputted in the formula,
PG = 125.4 - 99.8
PG = 25.6 kPa
The gauge pressure inside the container is 25.6kPa which is option C.
Answer:
=37.83783784
Explanation:
Find the total sum of all coins,
which is 37, take the number of pennies and the total of all coins put in parenthesis( 14/37) like so and than * times them by 100
you equation should look like this
(14/37)* 100= and than the answer shown above should be the one you received. I have checked this with multiple calculators, it should be accurate.
Answer:
The answer to your question is: 69.6 %
Explanation:
Freon -112 (C₂Cl₄F₂)
MW = (12 x 2) + (35.5 x 4) + (19 x 2)
= 24 + 142 + 38
= 204 g
204 g of C₂Cl₄F₂ ----------------- 100%
142 g ----------------- x
x = (142 x 100 ) / 204
x = 69.6 %
The final temperature of the water is the equilibrium temperature, or the also the final temperature of the iron after a long period of time. Applying the conservation of energy:
m,iron*C,iron*ΔT = - m,water*C,water*ΔT
The density of water is 1000 g/mL.
(25 g)(0.449 J/g·°C)(T - 398 K) = - (25 mL)(1000 g/mL)(4.18 J/g·°C)(T - 298)
Solving for T,
<em>T = 298.01 K</em>