Answer:
Explanation:Since the compound X has no net-dipole moment so we can ascertain that this compound is not associated with any polarity.
hence the compound must be overall non-polar. The net dipole moment of compound is zero means that the vector sum of individual dipoles are zero and hence the two individual bond dipoles associated with C-Cl bond must be oriented in the opposite directions with respect to each other.]
So we can propose that compound X must be trans alkene as only in trans compounds the individual bond dipoles cancel each other.
If one isomer of the alkene is trans then the other two isomers may be cis .
Since the two alkenes give the same molecular formula on hydrogenation which means they are quite similar and only slightly different.
The two possibility of cis structures are possible:
in the first way it is possible the one carbon has two chlorine substituents and the carbon has two hydrogens.
Or the other way could be that two chlorine atoms are present on the two carbon atoms in cis manner that is on the same side and two hydrogens are also present on the different carbon atoms in the same manner.
Kindly refer the attachments for the structure of compounds:
<span>There
are a number of ways to express concentration of a solution. This includes
molarity. Molarity is expressed as the number of moles of solute per volume of
the solution. We calculate the mass of the solute by first determining the number of moles needed. And by using the molar mass, we can convert it to units of mass.
Moles </span>(nh4)3po4 = 0.250 L (0.150 M) = 0.0375 moles (nh4)3po4
Mass = 0.0375 mol (nh4)3po4 (149.0867 g / mol) = 5.59 g (nh4)3po4
To determine the equilibrium concentration of hydronium ions in the solution, we use the given value of the percent ionized. Percent ionized is the percent of the ions that is dissociated into the solution. It is equal to the concentration of an ionized species over the initial concentration of the compound multiplied by 100 percent. For this case, the dissociation of the weak acid has a 1 is to 1 ratio to the ionized species such that the concentration of the CH3COO- and H+ ions at equilibrium would be equal. We calculate as follows:
5.2% = 5.2 M H3O+ / 100 M CH3COOH
5.2 M H3O+ / 100 M CH3COOH = [H3O+] / 0.048 M CH3COOH
[H3O+] = 0.2496 M
Answer:
He is probably studying <u>Geomorphology.
</u>
Explanation:
Geology is the science that studies the composition, structure, dynamics, and history of planet Earth, the processes by which it has evolved including everything that has to do with its natural resources and with this the processes that affect the surface, and therefore, the environment.
Geomorphology is a branch of geosciences, more specifically geography and geology. One of his most interesting models explains the ways in which the earth's surface is the result of a consistent dynamic balance.
Answer:
CH₄N
Explanation:
Given that;
mass of the sample = 0.312 g
mass of CO2 = 0.458 g
mass of H2O = 0.374 g
nitrogen content of a 0.486 gg sample is converted to 0.226 gg N2N2.
Let start with calculating the respective numbers of moles of Carbon Hydrogen and Nitrogen from the given data.
numbers of moles of Carbon from CO2 = 
= 
= 0.0104 mole
numbers of moles of hydrogen from H2O = 
= 
= 0.02077 × 2
= 0.0415 mole
The nitrogen content of a 0.486 g sample is converted to 0.226 g N2
Now, in 1 g of the sample; The nitrogen content = 
in 0.312 g of the sample, the nitrogen content will be; 
= 0.1450 g of N2
number of moles of N2 = 
= 
= 0.0103 mole
Finally to determine the empirical formula of Carbon Hydrogen and Nitrogen; we have:
Carbon Hydrogen Nitrogen
number of moles 0.0104 0.0415 0.0103
divided by the
smallest number

of moles
1 : 4 : 1
∴ The empirical formula = CH₄N