The location of the valence electron or the outermost electron is expressed in quantum numbers. There are five quantum numbers: prinicipal (n), angular momentum (l), magnetic (ms) and magnetic spin (ms) quantum numbers. This is based on Bohr's atomic model where electrons orbit around the nucleus. These electrons are in the orbitals with specific energy levels. Starting from energy level 1 that is closest to the nucleus, the energy level decreases to 2, 3, 4, 5, 6, and 7. These energy level numbers represent the principal quantum number. Within each orbital also contains subshell. From increasing to decreasing order, these subshells are the s, p, d and f subshells. These subshells represent the angular momentum quantum numer. Specifically, s=0, p=1, d=2 and f=3. Therefore, if the electron is in the orbital 5p, the quantum number would be: 5, 1. Applying these to the choices, the correct pairing would be:
2p: n=2. l=1
3d: n=3, l=2
2s: n=2. l=0
4f: n=4. l=3
1s: n=1, l=0
Answer:
Rotational spectroscopy, the dipole moment must change during the transition.
Rotational Raman spectroscopy, molecule must have anisotropic polarizability
Vibrational and electronic spectroscopy, molecule must have permanent dipole moment.
Explanation:
-
For the vibration rotation spectrum to be observed, it is necessary to change the dipole moment during the vibration.
- Raman scattering using an anisotropic crystal gives information about the orientation of the crystal. The polarization of Raman scattering light relative to the crystal, and the polarization of laser light, can be used to determine the orientation of the crystal, provided the crystal structure is known.
Answer:
When the two atoms move towards each other a compound is formed by sharing electron pairs supplied by each of the atoms to enable them have the stable 8 (octet) valency electrons in their outermost shell
Explanation:
The electronic configuration of the given element can be written as follows;
1s²2s²2p⁴
The given electronic configuration is equivalent to that of oxygen, therefore, we have;
The number of electrons in the valence shell = 2 + 4 = 6 electrons
Therefore, each atom requires 2 electrons to complete its 8 (octet) electrons in the outermost shell
When the two atoms move towards each other, they react and combine to form a compound by sharing 4 electrons, 2 from each atom, such that each atom can have an extra 2 electrons in its outermost orbit in the newly formed compound and the stable octet configuration is attained by each of the atoms in the newly formed compound.
Answer:
Impurities will be trapped in the crystals of the benzoic acid crystallized in this manner.
Explanation:
After benzoic acid is dissolved in hot water, it should have been allowed to cool gradually before it is transferred into an ice bath.
This gradual cooling will aid the separation of impurities so that when the vessel is now submerged in an ice bath, only pure benzoic acid is recrystalized.
If the vessel is immediately submerged into an ice bath, impurities will be trapped in the crystals of the benzoic acid.