<span>It rises confidence for the reason that the more times you conduct the similar experiment over and over should either demonstrate your hypothesis right and wrong and remove any random incidences that might touch your results. Meaning it permits to have a more accurate measure or conclusion.</span>
Answer:
It is neutral (NR)
Explanation:
Salts are formed when the ionizable hydrogens in an acid is replaced by metallic or ammonium ions from bases. The reaction is known as a neutralization reaction.
The nature of a salt formed from this reaction depends on the nature of the reacting acid and base.
If the reaction is between a strong acid and strong base, the salt produced is a neutral salt.
If the reaction occurs between a strong acid and a weak base, the salt produced is acidic.
If the reaction occurs between a strong base and a weak acid, the salt produced is a basic salt.
Considering the salt above, LiNO3.
On hydrolysis, addition of water, the following products are obtained:
LiNO3 + H2O ----> LiOH + HNO3
The products obtained, LiOH and HNO3 are a strong base and a strong acid respectively. Therefore, the salt, LiNO3, is a neutral salt.
the balanced chemical equation for the decomposition of H₂O₂ is as follows
2H₂O₂ ---> 2H₂O + O₂
stoichiometry of H₂O₂ to O₂ is 2:1
the number of moles of H₂O₂ decomposed is - 0.250 L x 3.00 mol/L = 0.75 mol
according to stoichiometry the number of O₂ moles is half the number of H₂O₂ moles decomposed
number of moles of O₂ - 0.75 mol / 2 = 0.375 mol
apply the ideal gas law equation to find the volume
PV = nRT
where P - standard pressure - 10⁵ Pa
V - volume
n - number of moles 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - standard temperature - 273 K
substituting the values in the equation
10⁵ Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 273 K
V = 8.5 L
volume of O₂ gas is 8.5 L
Answer:
The specific heat capacity of the metal is 0.843J/g°C
Explanation:
Hello,
To determine the specific heat capacity of the metal, we have to work on the principle of heat loss by the metal is equals to heat gained by the water.
Heat gained by the metal = heat loss by water + calorimeter
Data,
Mass of metal (M1) = 512g
Mass of water (M2) = 325g
Initial temperature of the metal (T1) = 15°C
Initial temperature of water (T2) = 98°C
Final temperature of the mixture (T3) = 78°C
Specific heat capacity of metal (C1) = ?
Specific heat capacity of water (C2) = 4.184J/g°C
Heat loss = heat gain
M2C2(T2 - T3) = M1C1(T3 - T1)
325 × 4.184 × (98 - 78) = 512 × C1 × (78 - 15)
1359.8 × 20 = 512C1 × 63
27196 = 32256C1
C1 = 27196 / 32256
C1 = 0.843J/g°C
The specific heat capacity of the metal is 0.843J/g°C