The answer is C. The payoff of most risks is insignificant.
Answer:

Explanation:
Hello,
In this case, considering that the safe temperature may be computed via the ideal gas law as we now the pressure, mass and volume via the dimensions:

The pressure in atm is:

And the moles considering the mass and molar mass (66 g/mol) of dinitrogen difluoride (N₂F₂):

In sich a way, by applying the ideal gas equation, which is not the best assumption but could work as an approximation due to the high temperature, the temperature, with three significant figures, will be:

Best regards.
Answer:
4.5 kg/L
Explanation:
Density is 4.5g/mL and it means that in 1 mL of volume, the mass contained is 4.5 g.
Let's make a rule of three
1L = 1000 mL
1 mL has a mass of 4.5 g
1000 mL would have 4500 g
Our new density would be 4500 g/L, but we may convert the g to kg
1 kg / 1000 g . 4500 g = 4.5 kg
In conclusion 4.5 g/mL = 4.5 kg/L
Answer: the mass number of the daugther atom is 232,
Explanation:
1) Alpha (α) decay is a nuclear reaction in which a nucleus (parent's nucleus) emits an alpha (α) particle and leads to a different atom (daughter atom).
2) The alpha (α) particle is a nucleus of helium atom, i,e, a nucleus with two protons and two neutrons. The symbol used for the α particles is <em>⁴₂He</em>, where the superscript 4 indicates the mass number (2 protons + 2 neutrons = mass number 4), and the subscript 2 indicates the atomic number (number of protons).
3) Then, to determine the mass number of the daughter atom you just need to do a mass number balance:
mass number of the parent atom = mass number of the daugther atom + mass number of the α particle.
The mass number of the radioactive (parent) atom is 90 protons + 142 neutrons = 232.
∴ 232 = x + 4 ⇒ x = 232 - 4 = 228 ← answer.
The full equation may help you to have a wider vision of the problem:
²³²₉₀ X → ⁴₂ He + ²²⁸₈₈ Y
Note this:
- 232 = 4 + 228 (this is a mass number balance)
- 90 = 2 + 88 (this is an atomic number balance)
- X is the parent atom, and Y is the daughter atom
- You can use a periodic table to determine the identity of the unknown atoms (using the atomic numbers).
Answer:
Total volume after adding crystal = 26.7 mL
Explanation:
Given data:
Density of crystal = 2.65 g/mL
Mass of sample = 4.46 g
Volume of water = 25.0 mL
Volume after adding crystal = ?
Solution:
First of all we will calculate the volume of crystal.
d = m/v
2.65 g/mL = 4.46 g/ v
v = 4.46 g/2.65 g/mL
v = 1.7 mL
Total volume after adding crystal = Volume of water + Volume of metal
Total volume after adding crystal = 25.0 mL + 1.7 mL
Total volume after adding crystal = 26.7 mL