Answer
a) A solution with a hydronium molarity of 0.00045 is acidic. True
Doing the calculus of pH
![pH= -Log [H^{+}] = -Log (0.00045)](https://tex.z-dn.net/?f=pH%3D%20-Log%20%5BH%5E%7B%2B%7D%5D%20%3D%20-Log%20%280.00045%29)
b) pH is a way to express the hydronium concentration over a wide range. True
pH means –Log[H+] and this value is used to express a wide range of hydronium concentration sometimes obtaining pH minor than zero.
c) Percent K and Fe are determined by doing ion exchange then a pH titration. False
Usually, Fe is determined by redox titration with potassium permanganate due to it’s more accurate. On the other hand, K is determined usually by volumetric process which includes precipitation like potassium picrate precipitate
d) About 0.2M HCl is the reagent used for the pH titrations. False.
In order to do pH titration, it is possible to use a wide range of HCl concentrations and other acids as reagent if the analyte is a basic compound. Otherwise, if the analyte is an acid compound you should use a basic compound as reagent.
e) A Lewis base is specie that can donate a proton to an acid. False
A Lewis base is an electron pair donor.
Answer:
The balanced equation tells us that 1 mole of Zn will produce 1 mole of H2.
1.566 g Zn x (1 mole Zn / 65.38 g Zn) = 0.02395 moles Zn
0.02395 moles Zn x (1 mole H2 / 1 mole Zn) = 0.02395 moles H2 produced
Now use the ideal gas law to find the volume V.
P = 733 mmHg x (1 atm / 760 atm) = 0.964 atm
T = 21 C + 273 = 294 K
PV = nRT
V = nRT/ P = (0.02395 moles H2)(0.0821 L atm / K mole)(294 K) / (0.964 atm) = 0.600 L
Answer:
Total volume after adding crystal = 26.7 mL
Explanation:
Given data:
Density of crystal = 2.65 g/mL
Mass of sample = 4.46 g
Volume of water = 25.0 mL
Volume after adding crystal = ?
Solution:
First of all we will calculate the volume of crystal.
d = m/v
2.65 g/mL = 4.46 g/ v
v = 4.46 g/2.65 g/mL
v = 1.7 mL
Total volume after adding crystal = Volume of water + Volume of metal
Total volume after adding crystal = 25.0 mL + 1.7 mL
Total volume after adding crystal = 26.7 mL
Mixing of pure orbitals having nearly equal energy to form equal number of completely new orbitals is said to be hybridization.
For the compound,
the electronic configuration of the atoms, carbon and hydrogen are:
Carbon (atomic number=6): In ground state= 
In excited state: 
Hydrogen (atomic number=1): 
All the bonds in the compound is single bond(
-bond) that is they are formed by head on collision of the orbitals.
The structure of the compound is shown in the image.
The Carbon-Hydrogen bond is formed by overlapping of s-orbital of hydrogen to p-orbital of carbon.
In order to complete the octet the required number of electrons for carbon is 4 and for hydrogen is 1. So, the electron in
of hydrogen will overlap to the 2p^{3}-orbital of carbon.
Thus, the hybridization of Hydrogen is
-hybridization and the hybridization of Carbon is
-hybridization.
The hybridization of each atom is shown in the image.
Answer:
The
of the given reaction is -129.6 kJ
Explanation:
The given chemical reaction is as follows.

Enthalpy of each reactant and products are as follows.




In the given chemical reaction involved two C-H bonds in the reactant side and one C-C bond in the product side therefore, the enthalpy of formation will be the negative.



Therefore, The
of the given reaction is -129.6 kJ