The answer is 3.39 mol.
<span>Avogadro's number is the number of molecules in 1 mol of substance.
</span><span>6.02 × 10²³ molecules per 1 mol.
</span>2.04 × 10²⁴<span> molecules per x.
</span>6.02 × 10²³ molecules : 1 mol = 2.04 × 10²⁴ molecules : x
x = 2.04 × 10²⁴ molecules * 1 mol : 6.02 × 10²³ molecules
x = 2.04/ 6.02 × 10²⁴⁻²³ mol
x = 0.339 × 10 mol
<span>x = 3.39 mol
</span>
From the chemical formula of sulfuric acid, we can see the molar ratio:
H : S : O
2 : 1 : 4
Now, we convert the mass of hydrogen given into the moles of hydrogen. This is done using
Moles = mass / Mr
Moles = 7.27 / 1
Moles = 7.27
Therefore, the moles will be:
S = 7.27 / 2 = 3.64 moles
O = 7.27 * 2 = 14.54 moles
Now, the respective masses are:
S = 32 * 3.64 = 116.48 grams
O = 16 * 14.54 = 232.64 grams
Answer : The results would show more amount of water in the hydrated sample.
Explanation :
The amount of water of crystallization can be found by taking the masses of hydrated copper sulfate and anhydrous copper sulfate.
The difference in masses indicates the mass of water lost during dehydration process.
If during dehydration process, some of the copper sulfate spatters out of the crucible, then this would give us less mass for anhydrous sample than the actual.
As a result, the difference in masses of hydrated sample and the anhydrous sample would be more.
Therefore the results would show more amount of water in the hydrated sample.
Answer:
=37.83783784
Explanation:
Find the total sum of all coins,
which is 37, take the number of pennies and the total of all coins put in parenthesis( 14/37) like so and than * times them by 100
you equation should look like this
(14/37)* 100= and than the answer shown above should be the one you received. I have checked this with multiple calculators, it should be accurate.
Answer:
The energy difference between these 2p and 2s orbitals is 
Explanation:
Wavelength of the photon emitted = 
Energy of the photon will corresponds to the energy difference between 2p and 2s orbital = E
Energy of the photon is given by Planck's equation:

h = Planck's constant = 
c = Speed of the light = 


The energy difference between these 2p and 2s orbitals is 