The intended sense is that of a reaction that depends on absorbing heat if it is to proceed. The opposite of an endothermic process is an exothermic process, one that releases "gives out" energy in the form of heat
Answer:
0.1 M
Explanation:
The overall balanced reaction equation for the process is;
IO3^- (aq)+ 6H^+(aq) + 6S2O3^2-(aq) → I-(aq) + 3S4O6^2-(aq) + 3H2O(l)
Generally, we must note that;
1 mol of IO3^- require 6 moles of S2O3^2-
Thus;
n (iodate) = n(thiosulfate)/6
C(iodate) x V(iodate) = C(thiosulfate) x V(thiosulfate)/6
Concentration of iodate C(iodate)= 0.0100 M
Volume of iodate= V(iodate)= 26.34 ml
Concentration of thiosulphate= C(thiosulfate)= the unknown
Volume of thiosulphate=V(thiosulfate)= 15.51 ml
Hence;
C(iodate) x V(iodate) × 6/V(thiosulfate) = C(thiosulfate)
0.0100 M × 26.34 ml × 6/15.51 ml = 0.1 M
Answer is: molality of urea is 5.84 m.
If we use 100 mL of solution:
d(solution) = 1.07 g/mL.
m(solution) = 1.07 g/mL · 100 mL.
m(solution) = 107 g.
ω(N₂H₄CO) = 26% ÷ 100% = 0.26.
m(N₂H₄CO) = m(solution) · ω(N₂H₄CO).
m(N₂H₄CO) = 107 g · 0.26.
m(N₂H₄CO) = 27.82 g.
1) calculate amount of urea:
n(N₂H₄CO) = m(N₂H₄CO) ÷ M(N₂H₄CO).
n(N₂H₄CO) = 27.82 g ÷ 60.06 g/mol.
n(N₂H₄CO) = 0.463 mol; amount of substance.
2) calculate mass of water:
m(H₂O) = 107 g - 27.82 g.
m(H₂O) = 79.18 g ÷ 1000 g/kg.
m(H₂O) = 0.07918 kg.
3) calculate molality:
b = n(N₂H₄CO) ÷ m(H₂O).
b = 0.463 mol ÷ 0.07918 kg.
b = 5.84 mol/kg.
Answer:
The number of moles of potassium hydroxide, KOH required to make 4 moles of K₂SO₄ is 8 moles of KOH
Explanation:
2KOH + H₂SO₄ → K₂SO₄ + 2H₂O
From the above reaction, we have 2 moles of KOH combining with 1 mole of H₂SO₄ to produce 1 mole of K₂SO₄ and 2 moles of H₂O.
Therefore the number of moles of potassium hydroxide that will be needed to make 4 moles of K₂SO₄ is;
8KOH + 4H₂SO₄ → 4K₂SO₄ + 8H₂O
8 moles of KOH is required to make 4 moles of K₂SO₄.