Answer: Your friend is incorrect.
Explanation: If we have an object or something that isn’t moving, (let’s say a notebook on a desk). If there is change, and the notebook moves, there is acceleration. Force = Mass times acceleration, f = m*a. There has to be a force, first of all. If you touched the notebook and moved it, some of your energy is transferred and now the notebook has kinetic energy. If our system is you and the notebook, the total energy doesn’t change. the energy is transferred, but doesn’t change. Your friend is not correct. Please give brainliest hope this helped!
<span>Answer:
.01 moles of D to .005 moles of L ~ so, .01+.005 = .015 total; using this total value, divide the portions of D and L.
so .01/.015 to .005/.015 ~ 67% D to 33% L.
And thus, the enantiomer excess will be 34%.</span>
Answer:
The
of the given reaction is -129.6 kJ
Explanation:
The given chemical reaction is as follows.

Enthalpy of each reactant and products are as follows.




In the given chemical reaction involved two C-H bonds in the reactant side and one C-C bond in the product side therefore, the enthalpy of formation will be the negative.



Therefore, The
of the given reaction is -129.6 kJ
Answer:
The disadvantages of each of the given model of electron configuration have been mentioned below:
1). Dot Structures - They take up excess space as they do not display the electron distribution in orbitals.
2). Arrow and line diagrams make the counting of electrons and take up too much space.
3). Written Configurations do not display the electron distribution in orbitals and help in lose counting of electrons easily.
Here we have to get the moles of hydrogen (H₂) consumed to form water (H₂O) from 1.57 moles of oxygen (O₂)
In this process 3.14 moles of H₂ will be consumed.
The balanced reaction between oxygen (O₂) and hydrogen (H₂); both of which are in gaseous state to form water, which is liquid in nature can be written as-
2H₂ (g) + O₂ (g) = 2H₂O (l).
Thus form the equation we can see that 1 mole of oxygen reacts with 2 moles of hydrogen to form 2 moles of water.
So, 1.57 moles of oxygen will consume (1.57×2) = 3.14 moles of hydrogen to form water.