The organic compound retinal binds with opsin and forms rhodopsin. Retinal is part of the molecule that is responsible for its color. This part is called chromophore. On the other hand, opsins are the proteins in photoreceptor cells. Retinal bounds with these opsins and forms rhodopsin: the basis of the human vision. Rhodopsin is also a protein.It is the pigment in the retinas of humans and animals.
CaCO₃ + 2HCl = CaCl₂ + CO₂ + H₂O
n(CaCO₃)=m(CaCO₃)/M(CaCO₃)
n(CaCO₃)=13.00/100.09=0.1299 mol
Δm=13.00+52.65-60.32=5.33 g
m(CO₂)=5.33 g
n(CO₂)=5.33/44.01=0,1211 mol
w=0.1211/0.1299=0,9323 (93.23%)
Answer:
Al 72.61%
Mg 27.39%
Explanation:
To obtain the mass percentages, we need to place the individual masses over the total mass and multiply by 100%.
If we observe clearly, we can see that the parameters given are the moles. We need to convert the moles to mass.
To do this ,we need to multiply the moles by the atomic masses. The atomic mass of aluminum is 27 while that of magnesium is 24.
Now, the mass of aluminum is thus = 27 * 0.0898 = 2.4246g
The mass of magnesium is 0.0381 * 24 = 0.9144g
We can now calculate the mass percentage.
The total mass is 0.9144 + 2.4246 = 3.339g
% mass of Al = 2.4246/3.339 * 100 = 72.61%
% mass of Mg = 0.9144/3.39 * 100 = 27.39%
Explanation:
Dipole moment is defined as the measurement of the separation of two opposite electrical charges.
is a bent shaped molecule with a dipole moment of 1.87.
is also a bent shaped molecule with a dipole moment of 1.10.
is a also a bent shaped molecule and has a negligible dipole moment.
has a dipole moment of 0.29.
Therefore, given molecules are arranged according to their increasing dipole moment as follows.
<
<
< 
Answer:
3-methylthiophene > thiophene > benzene > 2-methylfuran
Explanation:
Primarily, five membered heterocyclic aromatic rings undergo nitration at carbon-2. This is because, nitration at carbon-2 leads to the formation of three resonance structures while attack at carbon-3 yields only two resonance structures, hence it is less stabilized.
The presence of a methyl group which donates electrons promotes the stabilization of the cation formed in the nitration of 3-methylthiophene.
2-methylfuran is the least reactive towards nitration because the 2-position has been blocked by a methyl group.