answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
2 years ago
12

Cecil is working with samples of chlorine (Cl), oxygen (O), bromine (Br), and silver (Ag). The samples are all at room temperatu

re. Which substance is most likely the most dense?
Chemistry
1 answer:
Tpy6a [65]2 years ago
4 0

Answer:

itsy I just got the tests back and I got it right letterc

You might be interested in
Consider the following hypothetical reaction: 2 P + Q → 2 R + S The following mechanism is proposed for this reaction: P + P Q
aleksandr82 [10.1K]

Answer: the answer is option (D). k[P]²[Q]

Explanation:

first of all, let us consider the reaction from the question;

2P + Q → 2R + S

and the reaction mechanism for the above reaction given thus,

P + P ⇄ T     (fast)

Q + T → R + U    (slow)

U → R + S    (fast)

we would be applying the Rate law  to determine the mechanism.

The mechanism above is a three step process where the slowest step seen is the rate determining step. From this, we can see that this slow step involves an intermediate T as reactant and is expressed in terms of a starting substance P.

It is important to understand that laws based on experiment do not allow for intermediate concentration.  

The mechanism steps for the reactions in the question  are given below when we add them by cancelling the intermediates on the opposite side of the equations then we get the overall reaction equation.

adding this steps gives a final overall reaction reaction.

2P + Q ------------˃ 2R + S

Thus the rate equation is given as

Rate (R) = K[P]²[Q]

cheers, i hope this helps

3 0
2 years ago
The temperature on a distant, undiscovered planet is expressed in degrees B. For example, water boils at 180 ∘ B and freezes at
marin [14]

Answer:

40.3∘C

Explanation:

At planet B;

Water boils = 180∘C

Water freezes = 50∘C

In this planet the temperature difference = 180 - 50 = 130 compared to earth where the temperature difference is; 100 - 0 = 100

This means;

130 ∘C = 100 ∘C

x ∘C = 31 ∘C

x = 31 * 130 / 100

x = 40.3∘C

5 0
2 years ago
If the kinetic energy of a particle is equal to twice its rest mass, what is the velocity of the particle? Determine if relativi
ivann1987 [24]

Answer:

The velocity of the particle is 2 m/s,

Explanation:

Kinetic energy is defined as energy of the body due to its motion. It is given by :

K.E=\frac{1}{2}mv^2

Where :

m = mass of the object

v = velocity of the object

We have , particle with mass m and its kinetic energy is twice its mass.

K.E=2m

2m=\frac{1}{2}mv^2

v^2=\frac{4}{1}

v=2

And unit of velocity are m/s , so the velocity of the particle is 2 m/s.

8 0
2 years ago
How many liters of a 0.0550 M NaF solution contain 0.163 moles of NaF?
Kobotan [32]

Answer : The volume of solution will be 2.96 liters.

Explanation :

Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.

Formula used :

\text{Molarity}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}

In this question, the solute is NaF.

Now put all the given values in this formula, we get:

0.0550M=\frac{0.163mole}{\text{Volume of solution (in L)}}

\text{Volume of solution (in L)}=\frac{0.163mole}{0.0550M}

\text{Volume of solution (in L)}=2.96L

Therefore, the volume of solution will be 2.96 liters.

3 0
1 year ago
A mixture of gases containing 0.20 mol of SO2 and 0.20 mol of O2 in a 4.0 L flask reacts to form SO3. If the temperature is 25ºC
diamong [38]

Answer : The pressure in the flask after reaction complete is, 2.4 atm

Explanation :

To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

PV=n_TRT\\\\P=(n_1+n_2)\times \frac{RT}{V}

where,

P = final pressure in the flask = ?

R = gas constant = 0.0821 L.atm/mol.K

T = temperature = 25^oC=273+25=298K

V = volume = 4.0 L

n_1 = moles of SO_2 = 0.20 mol

n_2 = moles of O_2 = 0.20 mol

Now put all the given values in the above expression, we get:

P=(0.20+0.20)mol\times \frac{(0.0821L.atm/mol.K)\times (298K)}{4.0L}

P=2.4atm

Thus, the pressure in the flask after reaction complete is, 2.4 atm

5 0
2 years ago
Other questions:
  • What is the temperature (in K) of 16.45 moles of methane gas in a 4.95 L container at 4.68 atm?
    12·1 answer
  • The ions Cr3+ and O2- combine to form the ionic compound chromium oxide. In what proportions do these ions combine to produce a
    8·2 answers
  • Question 6 if a gas pressure gauge reads 32.0 psi, what is the pressure in inches of mercury? 165 in. hg 15.7 in. hg 65.1 in. hg
    12·1 answer
  • How many protons are there in 20.02 mol of neon (Ne)?
    9·1 answer
  • A filament of a light bulb is made from a pure sample of tungsten.
    10·1 answer
  • a 280.0 mL sample of neon exerts a pressure of 660.0 toff at 26.0 celsius. at what temperture would it exert a pressure of 940.0
    5·1 answer
  • Ammonia has been studied as an alternative "clean" fuel for internal combustion engines, since its reaction with oxygen produces
    5·1 answer
  • A balloon filled with helium has a volume of 30.0 L at a pressure of 100 kPa and a temperature at 15.0 Celsius. What will The vo
    10·2 answers
  • In terms of atomic structure, explain why the atomic radius of K is larger than that of Na
    13·1 answer
  • Consider the element in the periodic table that is directly to the right of the element identified in part (a). Would the 1s pea
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!