<span>We can use
the heat equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the substance
(kg), c is
the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is
the temperature difference (°C).</span>
Let's assume that the finale temperature is T.
Q = 1200 J
<span>
m = 36 g
c = 4.186 J/g °C</span>
ΔT = (T -
22)
By applying
the formula,
1200 J = 36 g
x 4.186 J/g °C x (T - 22)
(T - 22) = 1200 J / (36 g x 4.186 J/g °C)
(T - 22) = 7.96 °C
T = (7.96 + 22) °C = 29.96 °C
T = 30 °C
Hence,
the final temperature is 30 °C.
In this question, you are given the NaOH volume but asked for concentration.
Don't forget that for every 1 mol of NaOH there will be 1 mol OH- ion, but for every 1 mol of H2SO4 there will be 2 mol of H- ion.
To neutralize you need the same amount of OH- and H+, so the equation should be:
OH-= H+
<span>35.50cm3 * x*1= 25cm3* 0.2mol/dm3 *2
</span>x= 10/35.5 mol/dm3= 0.2816/dm3
Mass percentage is another way of expressing concentration of a substance in a mixture. Mass percentage is calculated as the mass of a component divided by the total mass of the mixture, multiplied by 100%. It is calculated as follows:
% CaCO3 = (<span>1.82g of calcium carbonate</span> / (1.05 g SiO2 + 0.69 g of cellulose + <span>1.82g of calcium carbonate)) x 100% = 51.12% Calcium carbonate</span>
Mixing of pure orbitals having nearly equal energy to form equal number of completely new orbitals is said to be hybridization.
For the compound,
the electronic configuration of the atoms, carbon and hydrogen are:
Carbon (atomic number=6): In ground state= 
In excited state: 
Hydrogen (atomic number=1): 
All the bonds in the compound is single bond(
-bond) that is they are formed by head on collision of the orbitals.
The structure of the compound is shown in the image.
The Carbon-Hydrogen bond is formed by overlapping of s-orbital of hydrogen to p-orbital of carbon.
In order to complete the octet the required number of electrons for carbon is 4 and for hydrogen is 1. So, the electron in
of hydrogen will overlap to the 2p^{3}-orbital of carbon.
Thus, the hybridization of Hydrogen is
-hybridization and the hybridization of Carbon is
-hybridization.
The hybridization of each atom is shown in the image.