Answer:

Explanation:
Due to Coulomb´s law electric force can be described by the formula
, where K is the Coulomb´s constant (
),
= Charge 1 (Na+ in this case),
is the charge 2 (Cl-) and r is the distance between both charges.
Work made by a force is W=F.d and total work produced is the change in energy between final and initial state. this is
.
so we have ![W=W_{f} -W_{i} =(K\frac{q_{(Na+)}q_{(Cl-)}rf}{r_{f} ^{2}})-(K\frac{q_{(Na+)}q_{(Cl-)}ri}{r_{i} ^{2}})=Kq_{(Na+)}q_{(Cl-)[\frac{1}{{r_{f}}} -\frac{1}{{r_{i}}}]](https://tex.z-dn.net/?f=W%3DW_%7Bf%7D%20-W_%7Bi%7D%20%3D%28K%5Cfrac%7Bq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%7Drf%7D%7Br_%7Bf%7D%20%5E%7B2%7D%7D%29-%28K%5Cfrac%7Bq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%7Dri%7D%7Br_%7Bi%7D%20%5E%7B2%7D%7D%29%3DKq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%5B%5Cfrac%7B1%7D%7B%7Br_%7Bf%7D%7D%7D%20-%5Cfrac%7B1%7D%7B%7Br_%7Bi%7D%7D%7D%5D)
Given that ri= 1.1nm=
and rf= infinite distance
![W=(9x10^{9})(1.6x10^{-19})(-1.6x10^{-19})[\frac{1}{\alpha }-\frac{1}{(1.1x10^{-9})}]=2.1x10^{-19}J](https://tex.z-dn.net/?f=W%3D%289x10%5E%7B9%7D%29%281.6x10%5E%7B-19%7D%29%28-1.6x10%5E%7B-19%7D%29%5B%5Cfrac%7B1%7D%7B%5Calpha%20%7D-%5Cfrac%7B1%7D%7B%281.1x10%5E%7B-9%7D%29%7D%5D%3D2.1x10%5E%7B-19%7DJ)
Answer:
Cesium Carbonate
Explanation:
2CsOH + H2CO3 → Cs2CO3 + 2H2O
When ΔG° is the change in Gibbs free energy
So according to ΔG° formula:
ΔG° = - R*T*(㏑K)
here when K = [NH3]^2/[N2][H2]^3 = Kc
and Kc = 9
and when T is the temperature in Kelvin = 350 + 273 = 623 K
and R is the universal gas constant = 8.314 1/mol.K
So by substitution in ΔG° formula:
∴ ΔG° = - 8.314 1/ mol.K * 623 K *㏑(9)
= - 4536
Answer:
P = 17.9618 atm
Explanation:
The osmotic pressure can be calculated and treated as if we are talking about an ideal gas, and it's expression is the same:
pV = nRT
However the difference, is that instead of using moles, it use concentration so:
p = nRT/V ----> but M = n/V so
p = MRT
We have the temperature of 18 °C (K = 18+273.15 = 291.15 K) the value of R = 0.08206 L atm / K mol, so we need to calculate the concentration, and we have the mass of HCl, so we use the molar mass of HCl which is 36.45 g/mol:
n = 13.7/36.45 = 0.3759 moles
M = 0.3759/0.5 = 0.7518 M
Now that we have the concentration, let's solve for the osmotic pressure:
p = 0.7518 * 0.08206 * 291.15
<em><u>p = 17.9618 atm</u></em>
Answer:
for X is -1.20 V
Explanation:
Oxidation:
[
]
reduction: 
---------------------------------------------------------------------------------------------------
overall:
So, 
or, 
or, 
So,
for X is -1.20 V