A. Noble gases are the chemical elements in group 18 of the periodic table.
B. Noble gas configuration is the electron configuration of noble gases.
C. Noble gases abbreviates large portions of the configuration.
Make sure that you understand what they are asking you from this question, as it can be confusing, but the solution is quite simple. They are stating that they want you to calculate the final concentration of 6.0M HCl once a dilution has been made from 2.0 mL to 500.0 mL. They have given us three values, the initial concentration, initial volume and the final volume. So, we are able to employ the following equation:
C1V1 = C2V2
(6.0M)(2.0mL) = C2(500.0mL)
Therefore, the final concentration, C2 = 0.024M.
The chemical reaction would be written as
2 AsF3<span> + 3 CCl4 = 2 AsCl3 + 3 CCl2F2
</span>
We use the given amounts of the reactants to first find the limiting reactant. Then use the amount of the limiting reactant to proceed to further calculations.
150 g AsF3 ( 1 mol / 131.92 g) = 1.14 mol AsF3
180 g CCl4 (1 mol / 153.82 g) = 1.17 mol CCl4
Therefore, the limiting reactant would be CCl4 since it would be consumed completely. The theoretical yield would be:
1.17 mol CCl4 ( 3 mol CCl2F2 / 3 mol CCl4 ) = 1.17 mol CCl2F2
The moles of chromium (iii) nitrate produced is calculated as follows
write the equation for reaction
3 Pb(NO3)2 + 2 Cr = 2 Cr(NO3)3 + 3 Pb
by use of mole ratio between Pb(NO3)2 to Cr(NO3)3 which is 3 : 2 the moles of Cr(NO3)3 is therefore
= 0.85 x2 /3 = 0.57 moles