Answer:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us use the thermodynamic definition of the Gibbs free energy and its relationship with Ksp as follows:

Thus, by combining them, we obtain:

Which is related to the general line equation:

Whereas:

It means that we answer to the blanks as follows:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Regards!
K, P, K, K, P, K, K, P, K, P. If it is moving, it is kinetic, if it isn't, it's potential. the sugar one is a little tricky using that method though, because we generally consider this in terms of spacial movement, but sugar holds energy which is later released by your body to allow you to move.the chemical bonds have potential energy because they release energy when broken.
<span>The elements in a Periodic Table are grouped according to their classifications. The major classifications are Metals, Non-metals, and Metalloids. Their level of reactivity can be gauged by simply looking at their position in the table. For Metals, their reactivity increases as you move to the left then going down. Non-metal reactivity increases as you move to the right then going up, starting at the bottom of the table.</span>
When the concentration is expressed in molality, it is expressed in moles of solute per kilogram of solvent. Since we are given the mass of the solvent, which is water, we can compute for the moles of solute NaNO3.
0.5 m = x mol NaNO3/0.5 kg water
x = 0.25 mol NaNO3
Since the molar mass of NaNO3 is 85 g/mol, the mass is
0.25 mol * 85 g/mol = 21.25 grams NaNO3 needed
Answer:
Chemists make observations on the macroscopic a scale that lead to conclusions about microscopic features
Explanation:
Many important chemical observations are made on the macroscopic scale. This is because, many of the scientific equipments available are not presently able to provide direct evidence about microscopic processes. Evidences obtained from macroscopic observations could serve as important insights into the nature of certain microscopic processes.
This is evident in the study of the structure of the atom. Most of the evidences that led to the deduction of the atomic structure were obtained from macroscopic evidence but ultimately provided important information about the microscopic structure of the atom.