Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).
Answer:
x= 138.24 g
Explanation:
We use the avogradro's number
6.023 x 10^23 molecules -> 1 mol C2H8
26.02 x 10^23 molecules -> x
x= (26.02 x 10^23 molecules * 1 mol C2H8 )/6.023 x 10^23 molecules
x= 4.32 mol C2H8
1 mol C2H8 -> 32 g
4.32 mol C2H8 -> x
x= (4.32 mol C2H8 * 32 g)/ 1 mol C2H8
x= 138.24 g
When the concentration is expressed in molality, it is expressed in moles of solute per kilogram of solvent. Since we are given the mass of the solvent, which is water, we can compute for the moles of solute NaNO3.
0.5 m = x mol NaNO3/0.5 kg water
x = 0.25 mol NaNO3
Since the molar mass of NaNO3 is 85 g/mol, the mass is
0.25 mol * 85 g/mol = 21.25 grams NaNO3 needed
Answer:
(C) H3O+(aq) + C2H3O2−(aq) -> HC2H3O2(aq) + H2O(l)
Explanation:
A buffer is a solution of a weak acid and its salt. It mitigates against changes in acidity or alkalinity of a system. A buffer maintains the pH at a constant value by switching the equilibrium concentration of the conjugate acid or conjugate base respectively.
Addition if an acid shifts the equilibrium position towards the conjugate acid side while addition of a base shifts the equilibrium position towards the conjugate base side.
Go to a famlie member, if you can't trust them, trust god. if you cant trust god, BURN IN HELL