Given that there is 48 liters of gasoline to be burned and that 45 kJ of energy is released per gram of gasoline burned, the amount of energy that the gasoline fuel produces can then be calculated, First, we convert 48 liters of gasoline to units of mass (grams) in order to use the given conversion of 45 kJ per gram of gasoline. To do this, we use the density of gasoline which is 0.77 g/mL. The following expression is then used:
48 L gasoline x 1000 mL/L x 0.77 g/mL x 45 kJ/g gasoline = 1663200 kJ
<span>The amount of energy produced by burning 48 L of gasoline was then determined to be 1663200 kJ. </span>
Answer: the answer is option (D). k[P]²[Q]
Explanation:
first of all, let us consider the reaction from the question;
2P + Q → 2R + S
and the reaction mechanism for the above reaction given thus,
P + P ⇄ T (fast)
Q + T → R + U (slow)
U → R + S (fast)
we would be applying the Rate law to determine the mechanism.
The mechanism above is a three step process where the slowest step seen is the rate determining step. From this, we can see that this slow step involves an intermediate T as reactant and is expressed in terms of a starting substance P.
It is important to understand that laws based on experiment do not allow for intermediate concentration.
The mechanism steps for the reactions in the question are given below when we add them by cancelling the intermediates on the opposite side of the equations then we get the overall reaction equation.
adding this steps gives a final overall reaction reaction.
2P + Q ------------˃ 2R + S
Thus the rate equation is given as
Rate (R) = K[P]²[Q]
cheers, i hope this helps
Answer:
The specific heat of the metal is 0.466 
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
The equation that allows calculating heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
In this case:
- Q= 2330 J
- c= ?
- m= 25 g
- ΔT= 200 °C
Replacing:
2330 J= c*25 g* 200 °C
Solving:

c=0.466 
<u><em>The specific heat of the metal is 0.466 </em></u>
<u><em></em></u>
Answer: electrons
Explanation: moving electrons cause momentarily charge
Distribution on molecule. This distribution induces similar distribution to
Adjacent molecule.
Sucrose is a non ionic compound. It does liberates ion when dissolved in water unlike NaCl or other salts which dissolve in water and produce respective cations and anions.
Thus if any amount of sucrose is dissolved in water, it will form non ionic aqueous solution (it will dissolve completely). Thus sucrose solution being non electrolytic will not conduct electricity in aqueous solution.
the bulb will not light up as sucrose will remain in molecular form only