NH₃, being a basic gas neutralizes the HNO₃ forming a salt NH₄NO₃
Therefore the correct answer is NH₃ and NH₄NO₃
The solution of which only 32% dissociates to release OH⁻ ions is a weak base. This is because some of the energy is used when the substance reacts with the solution thus some bonds are not broken.
HCl is an acid. This is because it dissociates in water to give H⁺ as the only positively charged ions.
Arrhenius acid increases the concentration of hydrogen ions because it dissociates to release hydrogen ions as the only positively charged ions in the acid. So the answer is TRUE
Arrhenius base dissociates in water to release hydroxide ions as the only negatively charged ions.
NaOH⁺aq⇒Na⁺ ₍aq₎+ OH⁻₍aq₎
Answer:
0.07906687 amu
Explanation:
For Boron ₅B¹¹, the number of protons is 5 and the mass is 11. The mass is the number of protons plus the number of neutrons, so:
neutrons = 11 - 5 = 6
The mass of an atom is concentrated in the nucleus, so it is the mass of the protons + the mass of the neutrons. The mass of 1 proton is 1.00727647 amu/proton, and the mass of 1 neutron: 1.00866492 amu/neutron, so for the element given the theoretical mass (mt) is:
mt = 5* 1.00727647 amu/proton + 6*1.00866492 amu/neutron
mt = 11.08837187 amu
The mass defect (md) is the theorical mass less the real mass:
md = 11.08837187 - 11.009305
md = 0.07906687 amu
When we can get the Kinetic energy from this formula KE= 1/2 M V^2and we can get the potential energy from this formula PE = M g H
we can set that the kinetic energy at the bottom of the fall equals the potential energy at the top so, KE = PE
1/2 MV^2 = M g H
1/2 V^2 = g H
when V is the velocity, g is an acceleration of gravitational force (9.8 m^2/s) and H is the height of the fall (8 m).
∴ v^2 = 2 * 9.8 * 8 = 156.8
∴ v= √156.8 = 12.5 m/s
Answer:
The bond dissociation energy to break 4 bonds in 1 mol of CH is 1644 kJ
Explanation:
Since there are 4 C-H bonds in CH₄, the bond dissociation energy of 1 mol of CH₄ is 4 × bond dissociation energy of one C-H bond.
From the table one mole is C-H bond requires 411 kJ, that is 411 kJ/mol. Therefore, 4 C-H bonds would require 4 × 411 kJ = 1644 kJ
So, the bond dissociation energy to break 4 bonds in 1 mol of CH₄ is 1644 kJ
(46x8.0)+(47x7.8)+(48x73.4)+(49x5.5)+(50x5.3) = 4792.3
4792.3/100 = 47.923 this is the average atomic mass of Titanium