answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
2 years ago
15

A mixture containing 20 mole % butane, 35 mole % pentane and rest

Chemistry
2 answers:
notka56 [123]2 years ago
8 0

Answer:

2.5 % butane, 42.2 % pentane and 55.3 % hexane

Explanation:

Hello,

In this case, the mass balance for each substance is given by:

Butane:z_bF=y_bD+x_bB\\\\Pentane: z_pF=y_pD+x_pB\\\\Hexane: z_hF=y_hD+x_hB

Whereas y accounts for the fractions at the outlet distillate and x for the fractions at the outlet bottoms. Moreover, with the 90 % recovery of butane, we can write:

0.9=\frac{y_bD}{z_bF}

So we can compute the product of the molar fraction of butane at the distillate by total distillate flow by assuming a 100-mol feed:

y_bD=0.9*z_bF=0.9*0.2*100mol=18mol

The total distillate flow:

y_bD=18mol\\\\D=\frac{18mol}{0.95} =18.95mol

And the total bottoms flow:

F=D+B\\\\B=F-D=100mol-18.95mol=81.05mol

Next, by using the mass balance of butane, we compute the molar fraction of butane at the bottoms:

x_b=\frac{z_bF-y_bD}{B} =\frac{0.2*100mol-18mol}{81.05} =0.025

Then, the molar fraction of pentane and hexane:

x_p=\frac{z_pF-y_pD}{B} =\frac{0.35*100mol-0.04*18.95mol}{81.05} =0.422

x_h=\frac{z_hF-y_hD}{B} =\frac{(1-0.2-0.35)*100mol-(1-0.95-0.04)*18.95mol}{81.05} =0.553

Therefore, the molar composition of the bottom product is 2.5 % butane, 42.2 % pentane and 55.3 % hexane.

NOTE: notice the result is independent of the value of the assumed feed, it means that no matter the basis, the compositions will be the same for the same recovery of butane at the feed, only the flows will change.

Regards.

Sliva [168]2 years ago
7 0

Answer:

The percentage composition of the Bottoms is

- 2.46% Butane.

- 42.25% Pentane.

- 55 29% Hexane.

Explanation:

The feed is eventually separated into distillate and bottoms at the end of the day.

If the total number of moles in the feed = F, and we assume an initial basis of 100 mol

Total number of moles in the distillate = D

Total number of moles in the bottoms = B

Since distillation is a physical separation technique, with no chemical reaction expected,

The overall balance of the system,

F = 100 = B + D (eqn 1)

In the feed, there is 20 mole% of butane, 35 mole% of pentane and the rest, that is, 45 mole% of hexane.

Butane = 0.20F moles = 0 2×100 = 20 moles

Pentane = 0.35F moles = 0.35×100 = 35 moles

Hexane = 0.45F moles = 0.45×100 = 45 moles

In the distillate, there is 95 mole% of butane, 4 mole% of pentane and the rest, that is, 1 mole% is hexane

Butane = 0.95D moles

Pentane = 0.04D moles

Hexane = 0.01D moles

The composition of the Bottoms isn't known.

But, it is given that the distillate is expected to contain 90% of the butane in the feed

Component balance for butane, based on this information

Butane in the distillate = 90% of butane in feed

0.95D = 90% × 0.20F = 0.18F

Butane in the distillate = 0.95D = 0.18F

D = 0.1895F = 0.1895 × 100 = 18.95 moles

The composition of the distillate can then be rewritten as

Butane = 0.95D moles = 0.95×18.95 = 18 0025 moles

Pentane = 0.04D moles = 0.04×18.95 = 0.758 moles

Hexane = 0.01D moles = 0.01×18.95 = 0.1895 moles

From the overall balance,

100 = B + D

B = 100 - D = 100 - 18.95 = 81.05 moles

Hence, the amount of each component in the Bottoms now will be the amount in the feed minus the amount in the distillate

Butane

20 - 18.0025 = 1.9975 moles

Percent compositon = (1.9975/81.05) = 0.0246 = 2.46%

Pentane

35 - 0.758 = 34.242 moles

Percent composition = (34.242/81.05) = 0.4225 = 42.25%

Hexane

45 - 0.1895 = 44.8105 moles

Percent composition = (44.8105/81.05) = 0.5529 = 55.29%

Please note that, irrespective of the assumed basis for the total number of moles in the feed, the molar composition of the bottoms obtained, remains the same.

Hope this Helps!

You might be interested in
Boron has an average mass of 10.81. One isotope of boron has a mass of 10.012938 and a relative abundance of 19.80 percent. The
Andrej [43]

The average mass of an atom is calculated with the formula:

average mass = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2) + ...  an so on

For the boron we have two isotopes, so the formula will become:

average mass of boron = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2)

We plug in the values:

10.81 = 0.1980 × 10.012938  + 0.8020 × mass of isotope (2)

10.81 = 1.98 + 0.8020 × mass of isotope (2)

10.81 - 1.98 = 0.8020 × mass of isotope (2)

8.83 = 0.8020 × mass of isotope (2)

mass of isotope (2) = 8.83 / 0.8020

mass of isotope (2) = 11.009975

mass of isotope (1) = 10.012938 (given by the question)

5 0
2 years ago
Octane is a liquid component of gasoline. Given the following vapor pressures of octane at various temperatures, estimate the bo
Hitman42 [59]

Answer:

110.8 ºC

Explanation:

To solve this problem we will make use of the Clausius-Clayperon equation:

lnP = - ΔHºvap/RT + C

where P is the pressure, ΔHºvap is the enthalpy of vaporization, R is the gas constant, T is the temperature, and C is a constant of integration.

Now this equation has a form y = mx + b where

y = lnP

x = 1/T

m = -ΔHºvap/R

Now we have to assume that ΔHºvap remains constant which is a good asumption given the narrow range of temperatures in the data ( 104-125) ºC

Thus what we have to do is find the equation of the best fit for this data using a  software as excel or your calculator.

T ( K)               1/T                  ln P

377               0.002653       5.9915

384              0.002604       6.2115

390              0.002564       6.3969

395              0.002532       6.5511

398              0.002513        6.6333

The best line has a fit:

y = -4609.5 x  + 18.218

with R² = 0.9998

Now that we have the equation of the line, we simply will substitute for a pressure of 496 mm in Leadville.

ln(496) = -4609.5(1/Tb) + 18.218

6.2066 = -4609.5(1/Tb) +18.218

⇒ 1/Tb = (18.218 - 6.2066)/4609.5 = 0.00261

Tb = 383.76 K  = (383.76 -273)K = 110.8 ºC

Notice we have touse up to 4 decimal places since rounding could lead to an erroneous answer ( i.e boiling temperature greater than 111, an impossibility given the data in the question). This is as a result of the value 496 mmHg so close to 500 mm Hg.

Perhaps that is the reason the question was flagged.

7 0
2 years ago
Aluminum–lithium (Al–Li) alloys have been developed by the aircraft industry to reduce the weight and improve the performance of
gtnhenbr [62]

Answer:

The concentration of Li (in wt%) is 3,47g/mol

Explanation:

To obtain the 2,42g/cm³ of density:

2,42g/cm³ = 2,71g/cm³X + 0,534g/cm³Y <em>(1)</em>

<em>Where X is molar fraction of Al and Y is molar fraction of Li.</em>

X + Y = 1 <em>(2)</em>

Replacing (2) in (1):

Y = 0,13

Thus, X = 0,87

The weight of Al and Li is:

0,87*26,98g/mol = 23,4726 g of aluminium

0,13*6,941g/mol = 0,84383 g of lithium

The concentration of Li (in wt%) is:

0,84383g/(0,84383g+23,4726g) ×100= <em>3,47%</em>

6 0
1 year ago
When 28.0 g of acetylene reacts with hydrogen, 24.5 g of ethane is produced. What is the percent yield of C2H6 for the reaction?
Afina-wow [57]

Answer:

Y=75.6\%

Explanation:

Hello.

In this case, since no information about the reacting hydrogen is given, we can assume that it completely react with the 28.0 g of acetylene to yield ethane. In such a way, via the 1:1 mole ratio between acetylene (molar mass = 26 g/mol) and ethane (molar mass = 30 g/mol), we compute the yielded grams, or the theoretical yield of ethane as shown below:

m_{C_2H_6}^{theoretical}=28.0gC_2H_2*\frac{1molC_2H_2}{26gC_2H_2}*\frac{1molC_2H_6}{1molC_2H_2}  *\frac{30gC_2H_6}{1molC_2H_6}\\ \\m_{C_2H_6}^{theoretical}=32.3gC_2H_6

Hence, by knowing that the percent yield is computed via the actual yield (24.5 g) over the theoretical yield, we obtain:

Y=\frac{24.5g}{32.3g}*100\%\\ \\Y=75.6\%

Best regards.

3 0
2 years ago
Write the expression for the equilibrium constant Kp for the following reaction.Enclose pressures in parentheses and do NOT writ
maxonik [38]

<u>Answer:</u> The expression for K_p is written below.

<u>Explanation:</u>

Equilibrium constant in terms of partial pressure is defined as the ratio of partial pressures of the products and the reactants each raised to the power their stoichiometric ratios. It is expressed as K_p

For a general chemical reaction:

aA+bB\rightleftharpoons cC+dD

The expression for K_p is written as:

K_p=\frac{P_{C}^c\times P_{D}^d}{P_{A}^a\times P_{B}^b}

The partial pressure for solids and liquids are taken as 1.

For the given chemical equation:

NH_4HS(s)\rightleftharpoons NH_3(g)+H_2S(g)

The expression for K_p for the following equation is:

K_p=\frac{(P NH_3)\times (P H_2S)}{(P NH_4HS)}

The partial pressure of NH_4HS will be 1 because it is solid.

So, the expression for K_p now becomes:

K_p=\frac{(P NH_3)\times (P H_2S)}{1}

Hence, the expression for K_p is written above.

5 0
2 years ago
Other questions:
  • How many O2 molecules are present in 0.470 g of oxygen
    10·1 answer
  • How to correctly solve this problem : 4.05Kg+567.95g+100.1g correct and best way
    10·1 answer
  • When 3-bromo-2,4-dimethylpentane is treated with sodium hydroxide, only one alkene is formed?
    14·1 answer
  • What is the driving force in the wittig reaction?
    5·1 answer
  • You are standing on the rim of a canyon, you drop a rock and in 7.0 seconds hear the sound pof it hitting the bottom, how deep i
    13·1 answer
  • Compounds X, C9H19Br, and Y, C9H19Cl, undergo base-promoted E2 elimination to give the same single alkene product, Z. Catalytic
    9·1 answer
  • A mysterious white powder could be powdered sugar (C12H22O11), cocaine (C17H21NO4), codeine (C18H21NO3), norfenefrine (C8H11NO2)
    7·1 answer
  • If South America were not there, explain how the direction of South equatorial current would be different
    9·1 answer
  • One of the biggest news stories of 1996 was the successful cloning of Dolly the sheep. Dolly was the first mammal cloned from an
    9·1 answer
  • Many plants are poisonous because their stems and leaves contain oxalic acid, H2C2O4, or sodium oxalate, Na2C2O4. When ingested,
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!