Answer:
Explanation:
A carbon-12 atom has a mass defect of 0.09564 amu. What is its nuclear binding energy? Round to 3 significant figures. x 10 J per carbon-12 atom
First use the formula;
1 amu =934 MeV
therefore 0.09564 will have
934 x 934
= 89.3 MeV
First we have to convert:145 pm = 145 * 10^(-12) m36 cm = 360 mm = 360 * 10^(-3) mn = 360 * 10^(-3) m / 145 * 10^(-12) m = = 360 * 10^(-3) * 10^(12) / 145 = = 2.482758621 * 10^(9) or:2,482,758,621 atoms.
Cu = 63.546
N= 14.001 g/mol
O= 15.999 g/mol * 3 = 47.997
Copper (II) Nitrate has a MW of 125.544 g/mol
6.25 x 125.544
= 784.65 <--- is your answer, if there were was a multiple choice or not :)
The moles of chromium (iii) nitrate produced is calculated as follows
write the equation for reaction
3 Pb(NO3)2 + 2 Cr = 2 Cr(NO3)3 + 3 Pb
by use of mole ratio between Pb(NO3)2 to Cr(NO3)3 which is 3 : 2 the moles of Cr(NO3)3 is therefore
= 0.85 x2 /3 = 0.57 moles
Usually concentrations are expressed as molarity, or moles of solute per liter solution. First, convert the mass of bromide ion to moles. The molar mass of bromine is 79.904 g/mol.
Moles of bromine = 65 mg * 1 g/1000 mg * 1 mol/79.904 g = 8.135×10⁻⁴ moles
Next, convert the mass of seawater to volume using the density.
Volume of seawater = 1 kg * 1 m³/ 1,025 kg * 1000 L/1 m³ = 0.976 L
Thus,
Molarity = 8.135×10⁻⁴ moles/0.976 L = 8.335×10⁻⁴ M