Let's assume that the gas has ideal gas behavior.
Then we can use ideal gas equation,
PV = nRT
Where, <span>
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the </span></span>gas is,<span>
P = 2.8 atm = 283710 Pa
V = 98 L = 98 x 10</span>⁻³ m³<span>
T = 292 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
283710 Pa x </span>98 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 292 K
<span> n = 11.45 mol
Hence, moles of gas is </span>11.45 mol.
B ase from the reaction <span>cacn2 3 h2o → caco3 2 nh3, for every 1 mole of caco3 produced there 2 moles of nh3 being produced. to solved this, we must first convert the caco3 to moles.
mass nh3 = 187 g caco3 (1 mol caco3 / 100 g caco3 ) ( 2 mol nh3 / 1 mol caco3) ( 17 g nh3 / 1 mol nh3)
mass nh3 = 63.58 g nh3 is produced</span>
Balance Chemical Equation is as follow,
<span> Cu + 2 AgNO</span>₃ → 2 Ag + Cu(NO₃)₂
According to Balance Equation,
2 Moles of Ag is produced by reacting = 1 Mole of Cu
So,
0.854 Moles of Ag will be produced by reacting = X Moles of Cu
Solving for X,
X = (0.854 mol × 1 mol) ÷ 2 mol
X = 0.427 Moles of Cu
Result:
0.854 Moles of Ag are produced by reacting 0.427 Moles of Cu.
Answer:
59.2 grams
Explanation:
We are given that 70.4% of the weight of the total 200 g of the concentration is made up of nitric acid, the remaining information is not required to solve the problem. Since water and nitric acid are the only components of the solution, the total weight of water is given by:

There are 59.2 grams of water in this solution.
Joseph Proust is the scientist who provided a foundation for John Dalton's work on the atomic structure.