Answer:
1219.5 kj/mol
Explanation:
To reach this result, you must use the formula:
ΔHºrxn = Σn * (BE reactant) - Σn * (BE product)
ΔHºrxn = [1 * (BE C = C) + 2 * (BE C-H) + 5/2 * (BE O = O)] - [4 * (BE C = O) + 2 * (BE O-H).
The BE values are:
BE C = C: 839 kj / mol
BE C-H: 413 Kj / mol
BE O = O: 495 kj / mol
BE C = O = 799 Kj / mol
BE O-H = 463 kj / mol
Now you must replace the values in the above equation, the result of which will be:
ΔHºrxn = [1 * 839 + 2 * (413) + 5/2 * (495)] - [4 * (799) + 2 * (463) = 1219.5 kj/mol
Answer:
The empirical formula of the solid metal oxide is : 
Explanation:
M atom is present in the every corner and in the center of every face.
Number of m atoms :

Number of tetrahedral voids in F.C.C = 2n = 2 × 4 = 8
Oxide ion is present in the half of the tetrahedral void
Number oxide ions = 
The molecular formula of the solid metal oxide is : 
The empirical formula represent the lowest number of atoms present in a compound.
The empirical formula of the solid metal oxide is : 
Answer:
Explanation:
For a chemical reaction, the enthalpy of reaction (ΔHrxn) is … ... to increase the temperature of 1 g of a substance by 1°C; its units are thus J/(g•°C). ... Both Equations 12.3.7 and 12.3.8 are under constant pressure (which ... The specific heat of water is 4.184 J/g °C (Table 12.3.1), so to heat 1 g of water by 1 ..
<span>Waves transfer energy through
vibration. just like electromagnetic waves, energy is transferred through
vibrations of electric and magnetic fields. In sound waves, energy is
transferred through vibration of air particles or particles of a solid through
which the sound travels. In water waves, energy is transferred through the
vibration of the water particles. While particles transfer energy through
conduction and convection.</span>
Explanation:
The given data is as follows.
= 253.4 nm =
(as 1 nm =
)
= 5,
= ?
Relation between energy and wavelength is as follows.
E = 
= 
=
J
= 
Hence, energy released is
.
Also, we known that change in energy will be as follows.

where, Z = atomic number of the given element


0.02 + 0.04 = 
= 
= 4
Thus, we can conclude that the principal quantum number of the lower-energy state corresponding to this emission is n = 4.