To determine the heat or energy needed for the process, we use the equation,
H = mcpdT
where m is the mass, cp is the specific heat and dT is the temperature difference.
H = (95.4g)(0.44 J/g°C)(32°C - 22°C)
= 419.76 J
Thus, the amount of heat that should be ABSORBED is approximately 419.76 J.
<h3>
Answer:</h3>
B. 0.33 mol
<h3>
Explanation:</h3>
We are given;
Gauge pressure, P = 61 kPa (but 1 atm = 101.325 kPa)
= 0.602 atm
Volume, V = 5.2 liters
Temperature, T = 32°C, but K = °C + 273.15
thus, T = 305.15 K
We are required to determine the number of moles of air.
We are going to use the concept of ideal gas equation.
- According to the ideal gas equation, PV = nRT, where P is the pressure, V is the volume, R is the ideal gas constant, (0.082057 L.atm mol.K, n is the number of moles and T is the absolute temperature.
- Therefore, to find the number of moles we replace the variables in the equation.
- Note that the total ball pressure will be given by the sum of atmospheric pressure and the gauge
- Therefore;
- Total pressure = Atmospheric pressure + Gauge pressure
We know atmospheric pressure is 101.325 kPa or 1 atm
Total ball pressure = 1 atm + 0.602 atm
= 1.602 atm
That is;
PV = nRT
n = PV ÷ RT
therefore;
n = (1.602 atm× 5.2 L) ÷ (0.082057 × 305.15 K)
= 0.3326 moles
= 0.33 moles
Therefore, there are 0.33 moles of air in the ball.
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
Answer:
The value of the of ΔG for the new reaction will be same as the given value of -20kcal/mol.
Explanation:
In an enzyme-catalyzed reaction, the concentration or amount of enzyme will not affect the equilibrium constant of the reaction due to which ΔG for the reaction will remain unaffected. Here enzymes are acting as a catalyst that cannot alter law thermodynamics and equilibrium of the reaction.
Since the enzyme amount will not affect the equilibrium of the reaction, the value of ΔG will remain the same as given -20 kcal/mol.
Answer:
a. 123.9°C
b.
c.
Explanation:
Hello, I'm attaching a picture with the numerical development of this exercise.
a. Since the steam is overheated vapour, the specific volume is gotten from the corresponding table. Then, as it became a saturated vapour, we look for the interval in which the same volume of state 1 is, then we interpolate and get the temperature.
b. Now, at 80°C, since it is about a rigid tank (constant volume for every thermodynamic process), the specific volume of the mixture is 0.79645 m^3/kg as well, so the specific volume for the liquid and the vapour are taken into account to get the quality of 0.234.
c. Now,since this is an isocoric process, the heat transfer per kg of steam is computed as the difference in the internal energy, considering the initial condition (showed in a. part) and the final one computed here.
** The thermodynamic data were obtained from Cengel's thermodynamics book 7th edition.
Best regards.