Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
Answer:
The particles begin to vibrate faster and more.
Explanation:
Adding heat to matter increases the energy, thus creating more movement. Eventually, the bucket will melt, turning to a liquid. While it is a sold, it still has particle movement, just not enough to break volume or shape.
<span>15.4 milligrams
The ideal gas law is
PV = nRT
where
P = pressure of the gas
V = volume of the gas
n = number of moles of gas
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = absolute temperature.
So let's determine how many moles of gas has been collected.
Converting temperature from C to K
273.15 + 25 = 298.15 K
Converting pressure from mmHg to kPa
753 mmHg * 0.133322387415 kPa/mmHg = 100.3917577 kPa
Taking idea gas equation and solving for n
PV = nRT
PV/RT = n
n = PV/RT
Substituting known values
n = PV/RT
n = (100.3917577 kPa 0.195 L) / (8.3144598 L*kPa/(K*mol) 298.15 K)
n = (19.57639275 L*kPa) / (2478.956189 L*kPa/(mol) )
n = 0.007897031 mol
So we have a total of 0.007897031 moles of gas particles.
Now let's get rid of that percentage that's water vapor. The percentage of water vapor is the vapor pressure of water divided by the total pressure. So
24/753 = 0.03187251
The portion of hydrogen is 1 minus the portion of water vapor. So
1 - 0.03187251 = 0.96812749
So the number of moles of hydrogen is
0.96812749 * 0.007897031 mol = 0.007645332 mol
Now just multiple the number of moles by the molar mass of hydrogen gas. Start with the atomic weight.
Atomic weight hydrogen = 1.00794
Molar mass H2 = 1.00794 * 2 = 2.01588 g/mol
Mass H2 = 2.01588 g/mol * 0.007645332 mol = 0.015412073 g
Rounding to 3 significant figures gives 0.0154 g = 15.4 mg</span>
Answer:
Volume of container = 0.0012 m³ or 1.2 L or 1200 ml
Explanation:
Volume of butane = 5.0 ml
density = 0.60 g/ml
Room temperature (T) = 293.15 K
Normal pressure (P) = 1 atm = 101,325 pa
Ideal gas constant (R) = 8.3145 J/mole.K)
volume of container V = ?
Solution
To find out the volume of container we use ideal gas equation
PV = nRT
P = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
First we find out number of moles
<em>As Mass = density × volume</em>
mass of butane = 0.60 g/ml ×5.0 ml
mass of butane = 3 g
now find out number of moles (n)
n = mass / molar mass
n = 3 g / 58.12 g/mol
n = 0.05 mol
Now put all values in ideal gas equation
<em>PV = nRt</em>
<em>V = nRT/P</em>
V = (0.05 mol × 8.3145 J/mol.K × 293.15 K) ÷ 101,325 pa
V = 121.87 ÷ 101,325 pa
V = 0.0012 m³ OR 1.2 L OR 1200 ml
<span>Bleach and ammonia can be used to make cl2. Bleach is commercially available and so people should be very careful during these experiments or even when mixing things in the household.</span>