Answer:
Thus, when the volume of the gas is exposed to a temperature above -273.15 K, the volume increases linearly with the temperature.
Explanation:
The expression for Charles's Law is shown below:

This states that the volume of the gas is directly proportional to the absolute temperature keeping the pressure conditions and the moles of the gas constant.
<u>Thus, when the volume of the gas is exposed to a temperature above -273.15 K, the volume increases linearly with the temperature. </u>
<u>For example , if the temperature of the gas is reduced to half, the volume also reduced to half. </u>
<u>At -273.15 K, according to Charles's law, it is possible to make the volume of an ideal gas = 0.</u>
Answer:
(a) A strong acid
Explanation:
We have given the pH of the solution is 2.46
pH=2.46
So the concentration of 
solution having H+ concentration more than
is acidic
Since in the given solution, H+ concentration is 0.00346 M which is more than 10^{-7}[/tex] so this is an acidic solution
Note-The concentration of
decide the behavior of the solution that is, it is acidic or basic
Answer:
At the burner temp. and pressure, 18.85 litres of air is needed to completely combust each gram of propane
Explanation:
The combustion stoichiometry is as follows:
C₃H₈ + 5O₂ = 4 H₂O + 3CO₂ The molecular weights (g/mol) are:
MW 44 5x32 4x18 3x44
So each gram of propane is 1/44 = 0.02272 mol propane
and will need 5 x 0.02272 = 0.1136 mol oxygen
At 0.21 mol fraction oxygen in air, 0.1136 / 0.21 = 0.54 mol air is needed to burn the propane.
At the low pressure in the burner we can use the Ideal Gas Law
PV=nRT, or V = nRT/P
P = 1.1 x 101325 Pa = 111457 Pa
T = 195°C + 273 = 468 K
R = 8.314
and we calculated n = number of moles air = 0.54 mol
So V m³ = 0.54 x 8.314 x 468 / 111457 = 0.0188 m³ = 18.85 litres air.
Rutherford, Geiger and Marsden's experiment proved that every atom has a nucleus and that this nucleus is of positive charge and contains the most of the mass of the atom. 0.005% of the volume occupied by the electrons is the volume of the nucleus.