The absorption spectrum is the result of absorption of light radiation by a material (solid or liquid) as a function of wavelength or frequency. The figure is shown below:
Answer:
Amino acids, along with glucose, are reabsorbed in the glomerular system with a passive or active mechanism as the fluid travels through the entire renal tubular system and enters the circulation again.
Active mechanisms are those that require expenditure of energy, that is, expenditure of the energy currency, while the passive ones do not, they occur through spontaneous non-energy processes such as osmosis, the osmotic gradient and the difference in concentrations in different compartments.
Explanation:
Glomerular filtration is the regulator of the excretion of metabolites and toxic molecules or not necessary for our body. That is why if the amino acid values are high as well as those of glucose in urine, we will be facing a pathology.
If glucose is increased, it is because there is a glycemic peak in blood volume, hence possible diabetes.
And if the amino acids are increased, we could be facing an autoimmune or proteolytic pathology where a large amount of body proteins such as muscle proteins would be breaking down and releasing the amino acids that make it up, this phenomenon usually appears in those people who suffer from rhabdomyolysis in expenses very intense energy sources not appropriate.
On the other hand, glomerular filtration occurs in the kidney and is carried out by the nephron, which is the functional unit of the kidney, within it there is a specific tubular system in collection, absorption and reabsorption, added to the presence of Bowman's capsule.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer: The friction force.
Justification:
Since the box is sliding over the table, the normal force equals the weight of the object (and any other vertical force that is applied on the box).
So, the normal force and weight (along with any other vertical component of a force applied on the box) must be 10 N and 10 N.
The other two forces: 14 N and 7 N are the forces in the plane of the table and should be opposite in a same line. The 14 N force is the responsible of the motion and the 7N force is opposing the 14 N force, so the 7N force has to be the friction force. Of course, 14N - 7N > 0 which is why the box is moving.
Answer:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)
Explanation:
We'll begin by writing the dissociation equation for aqueous AgNO₃ and KI.
Aqueous AgNO₃ and KI will dissociate in solution as follow:
AgNO₃ (aq) —> Ag⁺(aq) + NO₃¯ (aq)
KI (aq) —> K⁺(aq) + I¯(aq)
Aqueous AgNO₃ and KI will react as follow:
AgNO₃ (aq) + KI (aq) —>
Ag⁺(aq) + NO₃¯ (aq) + K⁺ (aq) + I¯(aq) —> AgI (s) + K⁺ (aq) + NO₃¯ (aq)
Cancel out the spectator ions (i.e ions that appears on both sides of the equation) to obtain the net ionic equation. The spectator ions are K⁺ and NO₃¯.
Thus, the net ionic equation is:
Ag⁺ (aq) + I¯ (aq) —> AgI (s)