Hey there !
Molar mass carbon dioxide:
CO2 = 44.01 g/mol
1) number of moles :
1 mole CO2 ------------- 44.01 g
(moles CO2) ------------ 243.6 g
moles CO2 = 243.6 * 1 / 44.01
moles CO2 = 243.6 / 44.01
=> 5.535 moles of CO2
Therefore:
1 mole -------------------- 6.02x10²³ molecules
5.535 moles ------------ ( molecules CO2)
molecules CO2 = 5.535 * ( 6.02x10²³) / 1
=> 3.33x10²⁴ molecules of CO2
Answer:
The equation for the rate of this reaction is R = [NO] + {O2}
Explanation:
The rate-determining step of a reaction is the slowest step of a chemical reaction which determines the rate (speed) at which the overall reaction would take place.
Reaction mechanism:
The slow and fast reactions both have NO3 which is cancelled out on both sides, in order to get the overall reaction.
The rate law for this reaction would be that for the rate determining step:
R = [NO] + {O2}
K, P, K, K, P, K, K, P, K, P. If it is moving, it is kinetic, if it isn't, it's potential. the sugar one is a little tricky using that method though, because we generally consider this in terms of spacial movement, but sugar holds energy which is later released by your body to allow you to move.the chemical bonds have potential energy because they release energy when broken.
The question is missing the graphics required to answer which I have attached as an image.
There are four different representations of the orientation of water molecules around chloride anion. Let's first analyze the water molecule.
We have H-O-H as the structure of water. The oxygen atom is more electronegative than the hydrogen atoms, which results in a partial positive charge on the hydrogen atoms and a partial negative charge on the oxygen atom.
The chloride anion is a negative charge. Therefore, the water molecules should orient themselves with the hydrogen atoms facing the chlorine atom as the partial positive charge on the hydrogen atoms will be attracted to the negative charge of the chlorine atom.
The correct representation is shown in graph 3 which shows all hydrogen atoms facing the chlorine anion.
The ore contains 55.4% calcium phosphate (related to the mineral apatite) so the amount of Ca3(PO4)2 is 55.4%x=1000g so x=1000/0.554= 1.805kg. Now for the % of P in this amount of calcium phosphate, use all the masses of the elements in Ca3PO4= Ca=40.078 x 3= 120.23 and (PO4)2= (30.974+64)2=189.95 (NB oxygen is 16 mass x 4 =64) so the total mass is 310.2 and we have 61.95 of P (Pmass x 2) so 61.95/3102.= 0.19 or 19% P. So of the 1.805 x 0.19= 0.34kg of phosphorus.