Answer:
Option A
Explanation:
Number of millimoles of Na3PO4 = 1 × 100 = 100
Number of millimoles of AgNO3 = 1 × 100 = 100
When 1 mole of Na3PO4 is dissociated we get 3 moles of sodium ions and 1 mole of phosphate ion
When 1 mole of AgNO3 is dissociated, we get 1 mole of Ag+ and 1 mole of NO3-
As Ag+ concentration is negligible, the dissociated Ag+ ion must have form the precipitate with phosphate ion and as number of moles of Ag+ and phosphate ion are same, therefore the concentration of phosphate ion must be negligible
Here as 100 millimoles of Na3PO4 is there, we get 300 millimoles of Na+ and 100 millimoles of PO43-
And as 100 millimoles of AgNO3 is there, we get 100 millimoles of Ag+ and 100 millimoles of NO3-
∴ Increasing order of concentration will be PO43- < NO3- < Na+
B, homeostasis. “Homeostasis is the state of steady internal, physical, and chemical conditions maintained by living systems.”
Answer:

Explanation:
Hello,
In this case, in terms of the heat, mass, heat capacity and change in temperature, we can analyze thermal changes as:

In such a way, we compute the required change in temperature as shown below:

Such change in temperature is positive indicating an increase in the temperature as the involved heat is positive, in means that heat was added to increase the temperature.
Best regards.
Molar mass of TiCl₃ = (47.9 + 35.5×3) g/mol = 154.4 g/mol
No. of moles of TiCl₃ = (380 g) / (154.4 g/mol) = 2.46 mol
1 mole of TiCl₃ contains 1 mole of Ti.
No. of moles of Ti needed = (2.46 mol) × 1 = 2.46 mol
Molar mass of Ti = 47.9 g/mol
Mass of Ti needed = (2.46 mol) × (47.9 g/mol) = 118 g