Answer:
a. The original temperature of the gas is 2743K.
b. 20atm.
Explanation:
a. As a result of the gas laws, you can know that the temperature is inversely proportional to moles of a gas when pressure and volume remains constant. The equation could be:
T₁n₁ = T₂n₂
<em>Where T is absolute temperature and n amount of gas at 1, initial state and 2, final states.</em>
<em />
<em>Replacing with values of the problem:</em>
T₁n₁ = T₂n₂
X*7.1g = (X+300)*6.4g
7.1X = 6.4X + 1920
0.7X = 1920
X = 2743K
<h3>The original temperature of the gas is 2743K</h3><h3 />
b. Using general gas law:
PV = nRT
<em>Where P is pressure (Our unknown)</em>
<em>V is volume = 2.24L</em>
<em>n are moles of gas (7.1g / 35.45g/mol = 0.20 moles)</em>
R is gas constant = 0.082atmL/molK
And T is absolute temperature (2743K)
P*2.24L = 0.20mol*0.082atmL/molK*2743K
<h3>P = 20atm</h3>
<em />
We use the formula:
PV = nRT
First let us get the volume V:
volume = 14 ft * 12 ft * 10 ft = 1,680 ft^3
Convert this to m^3:
volume = 1680 ft^3 * (1 m / 3.28 ft)^3 = 47.61 m^3
n = PV / RT
n = (1 atm) (47.61 m^3) / (293.15 K * 8.21x10^-5 m3 atm /
mol K)
<span>n = 1,978.13 mol</span>
The atom has only one isotope which means 100 % of same atom is present in nature. The atomic mass of an element is the number of times an atom of that element is heavier than an atom of carbon taken as 12. Mass of one atom of that isotope is 9.123 ✕ 10⁻²³ g, so mass of one mole of atom that is Avogadro's number of atom is 6.023 X 10²³ X 9.123 X 10⁻²³ g=54.94 g = 55 g (approximate).
So, the atom having atomic mass 55 will be Cesium (Cs). Only one isotope of Cesium is stable in nature.
Copper nitrate and nitric oxide are produced in this reaction.
When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹