The answer to this question is D! The ball and stick model! Hope this helps :)
Answer:
1.73 atm
Explanation:
Given data:
Initial volume of helium = 5.00 L
Final volume of helium = 12.0 L
Final pressure = 0.720 atm
Initial pressure = ?
Solution:
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
P₁ × 5.00 L = 0.720 atm × 12.0 L
P₁ = 8.64 atm. L/5 L
P₁ = 1.73 atm
solution:
Hydration is the addition of water; hydrogenation is the addition of hydrogen.
desire rxn: _C4H6(g) + 2 H2(g)-----> C4H10(g)___dHhy = ??
knowns:
__________C4H6 + 11/2 O2 --------> 4CO2 + 3H2O______dHox = -2540.2 kJ/mole
__________4CO2 + 5H2O -----------> C4H10 + 13/2 O2___-dHox = 2877.6 kJ/mole
___________2(1/2 O2 + H2 -------------> H2O)___________2*dHox = 2(-285.8 kJ/mole)
Basic mathematics is a prerequisite to chemistry – I just try to help you with the methodology of solving the problem
Partial pressure is the amount of pressure or force that is exerted by the atoms into the outer environment. it is dependent on the temperature and pressure of the present surroundings. in this case, we are asked in this problem to determine the partial pressure of oxygen at 16oC and 1 atm. We have to look into a solubility data table commonly found in handbooks and determined via experiments and correlations. According to literature, the value of the partial pressure is equal to 0.617 mM.This is under the assumption that the salinity of the water in which oxygen is dissolved is equal to zero.
Answer:
The time required for the coating is 105 s
Explanation:
Zinc undergoes reduction reaction and absorbs two (2) electron ions.
The expression for the mass change at electrode
is given as :

where;
M = molar mass
Z = ions charge at electrodes
F = Faraday's constant
I = current
A = area
t = time
also;
=
; replacing that into above equation; we have:
---- equation (1)
where;
A = area
d = thickness
= density
From the above equation (1); The time required for coating can be calculated as;
![[ \frac{20 cm^2 *0.0025 cm*7.13g/cm^3}{65.38g/mol}*2 \frac{moles\ of \ electrons}{mole \ of \ Zn} * 9.65*10^4 \frac{C}{mole \ of \ electrons } ] = (20 A) t](https://tex.z-dn.net/?f=%5B%20%5Cfrac%7B20%20cm%5E2%20%2A0.0025%20cm%2A7.13g%2Fcm%5E3%7D%7B65.38g%2Fmol%7D%2A2%20%5Cfrac%7Bmoles%5C%20of%20%5C%20electrons%7D%7Bmole%20%5C%20of%20%5C%20Zn%7D%20%2A%209.65%2A10%5E4%20%5Cfrac%7BC%7D%7Bmole%20%5C%20of%20%5C%20electrons%20%7D%20%20%5D%20%3D%20%2820%20A%29%20t)

= 105 s