Answer:
c. Bomb calorimetry
Explanation:
The hydrocarbons are combustibles, it means that they can react in a combustion reaction to release energy. To measure this amount of energy, it's necessary equipment that the reaction can be placed in a controlled way. The bomb calorimeter is this equipment, which is an adiabatic vessel, with water. The heat is calculated based on the increase in the water temperature.
The coffee-cup calorimetry is used to measure the heat of a dissolution reaction and the bomb manometry is used to measure the pressure.
0.17 M is the is the molal concentration of this solution
Explanation:
Data given:
freezing point of glucose solution = -0.325 degree celsius
molal concentration of the solution =?
solution is of glucose=?
atomic mass of glucose = 180.01 grams/mole
freezing point of glucose = 146 degrees
freezing point of water = 0 degrees
Kf of glucose = 1.86 °C
ΔT = (freezing point of solvent) - (freezing point of solution)
ΔT = 0.325 degree celsius
molality =?
ΔT = Kfm
rearranging the equation:
m = 
m= 0.17 M
molal concentration of the glucose solution is 0.17 M
Answer:
20 kJ/mol
Explanation:
From ∆G°= -RTlnK
But
Ag2SO4(s)<----------->2Ag+(aq) + SO4^2-(aq)
Ksp= [2Ag+]^2 [SO4^2-]
But Ag+ = 0.032M
Ksp= (2×0.032)^2 (0.032)
Ksp= 1.31072×10^-4
∆G°= -RTlnK
∆G°= -(8.314× 298×(-8.93976))= 20KJmol-1( to the nearest KJ)
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. At STP graphite and diamond are two solid forms of carbon, the statement that explains why these two forms of carbon differ in hardness is this: <span>Graphite and diamond have different molecular structures. Hope this helps.</span>
Answer : The number of grams of solute in 500.0 mL of 0.189 M KOH is, 5.292 grams
Solution : Given,
Volume of solution = 500 ml
Molarity of KOH solution = 0.189 M
Molar mass of KOH = 56 g/mole
Formula used :

Now put all the given values in this formula, we get the mass of solute KOH.


Therefore, the number of grams of solute in 500.0 mL of 0.189 M KOH is, 5.292 grams