Molality is the number of moles of solute in 1 kg of solvent
number of moles of sucrose - mass of sucrose / molar mass
number of moles of sucrose - 34.2 g / 342.34 g/mol = 0.0999 mol
number of moles in 125 g of water - 0.0999 mol
therefore number of moles in 1000 g - 0.0999 / 125 x 1000 = 0.799 mol/kg
molality of sucrose solution - 0.799 mol/kg
Total mass of CaCO3 = 40 amu of Ca + 12amu of C + 16×3 amu of oxygen = 100amu of CaCO3
i.e 100 tonnes of CaCO3 .
mass of CO2 = 12amu of C + 2× 16amu of O = 44 amu of CO2
mass % of CO2 in CaCO3 = (44/100)×100 =44%
i.e
44% of 100 tonnes is CO2.
=44 tonnes of CO2.
therefore, 44% of CO2 is present in CaCO3.
<u>Answer:</u> The chemical equations and equilibrium constant expression for each ionization steps is written below.
<u>Explanation:</u>
The chemical formula of carbonic acid is
. It is a diprotic weak acid which means that it will release two hydrogen ions when dissolved in water
The chemical equation for the first dissociation of carbonic acid follows:

The expression of first equilibrium constant equation follows:
![Ka_1=\frac{[H^+][HCO_3^{-}]}{[H_2CO_3]}](https://tex.z-dn.net/?f=Ka_1%3D%5Cfrac%7B%5BH%5E%2B%5D%5BHCO_3%5E%7B-%7D%5D%7D%7B%5BH_2CO_3%5D%7D)
The chemical equation for the second dissociation of carbonic acid follows:

The expression of second equilibrium constant equation follows:
![Ka_2=\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]}](https://tex.z-dn.net/?f=Ka_2%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCO_3%5E%7B2-%7D%5D%7D%7B%5BHCO_3%5E-%5D%7D)
Hence, the chemical equations and equilibrium constant expression for each ionization steps is written above.
<span>
• </span>Volume of the marshmallow:
V = 2.75 in^3 (but, 1 in^3 = 16.39 cm^3)
V = 2.75 × 16.39 cm^3
V = 2.75 × 16.39 cm^3
V = 45.0725 cm^3
• Density:
d = 0.242 g/cm^3
<span>• </span>Mass:
m = d × V
m = (0.242 g/cm^3) × (45.0725 cm^3)
m = (0.242 g/cm^3) × (45.0725 cm^3)
m = 10.907545 g
m ≈ 10.9 g <——<span>— this is the answer.
I hope this helps. =)
</span>