Answer:
Because milk has higher KE than ice, KE is transferred from the milk to the molecules of ice.
Explanation:
The best statement that expresses the transfer of kinetic energy(K.E) is that kinetic energy is transferred from the milk to the ice.
Kinetic energy is form of energy due to motion of the particles of a medium. In this regard, we are dealing with heat energy.
- Heat energy is dissipated from a body at higher temperature to one at a lower temperature.
- Ice is at a lower temperature which is 0°C
- Heat will be transferred in form of thermal energy from the body at higher temperature to one with a lower temperature.
- This is from the milk to the molecules of ice.
Answer:
see attached
Explanation:
Dimensional analysis is useful whenever dimensions are involved. Unless it is quite clear that all of the problem dimensions are consistent (for example, all speeds in miles per hour, or all angles in degrees), dimensional analysis can be useful for keeping the math straight.
Only units of the same dimensions can be added or subtracted. When numbers are multiplied or divided or raised to a power, dimensional analysis can help ensure that the appropriate operations are being used on appropriate numbers. It can also help ensure that dimensions are being combined properly to give appropriate derived dimensions.
__
Scientific notation is a way of writing very large or very small numbers compactly. It can also help with "order of magnitude" estimates. If an answer using SI prefixes is appropriate, or if a number can be conveniently expressed in standard form, then scientific notation is usually not required.
On the other hand, SI prefixes may not be appropriate in some cases, or a problem may specify that scientific notation be used for expressing results. In those instances, scientific notation should be used.
Answer:
The mass is recorded as 32.075 g
Explanation:
"The first digit of uncertainty is taken as the last significant digit", this is the rule for significant figures in the analysis. The balance measures the mass up to three decimal places, so it makes the most sense to note the whole figure.
Answer:
In 1000 ml there is 0.10 moles of Fe 2+
Therefore, in 10 ml there is (0.1/1000)*10= 0.001 mol of Fe2+
mole ratio for rxn Fe2+ : MnO4- is
1 : 2
therefore if 0.001 moles of Fe2+ react then 0.001*2 =0.002 moles of MnO4- react with Fe2+
hence, molarity of MnO4- = (mol*vol)/1000
= 0.002*10.75/1000= 2.15*10-5M
Explanation:
Hope this helps
Bronze alloy and porcelain dentures