<span>when it comes to adding or subtracting numbers, his final answer should have the same number of decimal places as the least precise value.
For example if you add 2 numbers; 10.443 + 3.5 , 10.443 has 3 decimal places and 3.5 has only one decimal place.
Therefore 3.5 is the less precise value.
So when adding these 2 values the final answer should have only one decimal place.
after adding we get 13.943 but it can have upto one decimal place. then the second decimal place is less than 5 so the answer should be rounded off to 13.9.
the answer is the same number of decimal places as the least precise value</span>
Answer:
The correct answer is: The substitution altered the secondary and tertiary structure of the enzyme so that the mutated enzyme folds into a different shape than the normal enzyme does.
Explanation:
In the given condition, the substitution mutation of gene causes a replacement of serine by phenylalanine amino acids which causes a reduction in the activity of the enzyme. Since serine is polar and has -OH or hydroxy group involves the information of binding of biological catalyst to the substrate.
The primary structure of a protein is significant which finalizes the number of amino acids their sequence. The mutation of protein also affects both secondary and tertiary structures as it disturbs the structure of the protein and affects the catalytic activity as well as the binding affinity of the substrate.
the substitution of serin by phenylalanine does not affect or influence the mass of enzyme.
When it goes bioom bing bong bang pew pew pew yeauae right?
Answer:
D. Intramolecular covalent bond
Explanation:
Compound D is structurally more rigid as a result of intramolecular covalent bonding. The forces that hold together atoms within a compound are greater as compared to forces holding two molecules together (intermolecular bonding). On the other hand Hydrogen bonds are weaker as compared to covalent bonds. Covalent bonds involve the sharing of electrons between two atoms and Hydrogen bonds are formed between a highly electronegative atom like oxygen, Flourine,Chlorine to hydrogen.
Answer:
-1815.4 kJ/mol
Explanation:
Starting with standard enthalpies of formation you can calculate the standard enthalpy for the reaction doing this simple calculation:
∑ n *ΔH formation (products) - ∑ n *ΔH formation (reagents)
This is possible because enthalpy is state function meaning it only deppends on the initial and final state of the system (That's why is also possible to "mix" reactions with Hess Law to determine the enthalpy of a new reaction). Also the enthalpy of formation is the heat required to form the compound from pure elements, then products are just atoms of reagents organized in a different form.
In this case:
ΔH rxn = [(2 * -1675.7) - (3 * -520.0)] kJ/mol = -1815.4 kJ/mol