Explanation:
Formation of crystals starts with formation of ions. After the formation of ions the bond formation takes place between the ions.
Bond making between the ions give rise to formation of cubic unit cell by placing them in such a fashion that it forms a shape of a cube.
These cube are then arranged in a repeated pattern which ultimately leads to the formation of crystals.
Hence, the order of steps:
Step 1 : Formation of ions
Step 2: Formation of ionic bonds
Step 3: Formation of cubes
Step 4: Formation of crystals
Answer:

Explanation:
The<em> energy of a photon</em>, E, can be calculated with the Planck-Einstein equation:

Where:
- h is Planck's constant 6.626×10⁻³⁴ J.s, and
- f is the frequency of the photon or electromagnetic radiation.
Substituting with your data:

Now multiply by Avogadro's number to obtain the energy of one mole of photons:

Explanation:
Half life is simply the amount of time it takes for half of a substance to decompose.
Options;
- Carbon-14 has a half-life of 5,730 years. A 30 gram sample will be 10 grams after 5,730 years. This is incorrect. After 5730 years, 15g of the sample ought to remain.
- Nickel-59 has a half-life of 76,000 years. A sample would go through 3 half-lives in 228,000 years. This is correct. 3 * 76000 = 228,000
- Hafnium-182 has a half-life of 9 million years. A 38 gram sample would be 4.75 grams in 27 million years. This is incorrect. Mass after 3 half lives (27/9) = 9.5 (38 / 2 / 2)
- Iron-60 has a half-life of 1.5 million years. In 6 million years a 40 gram sample would be reduced to 10 grams. This is incorrect. Mass after 4 half lives (6 / 1.5) = 2.5 gram (40 / 2 / 2 /2 / 2)
- Lead-202 has a half-life of 52,500 years. The original sample must have been 120 grams if you have a 60 gram sample after 105,000 years. This is incorrect. Original sampe = 240 gram. So after 2 half lives (105,000/52500), mass left = 60 (240 / 2 /2)
Answer:

Explanation:
Hello,
In this case, in terms of the heat, mass, heat capacity and change in temperature, we can analyze thermal changes as:

In such a way, we compute the required change in temperature as shown below:

Such change in temperature is positive indicating an increase in the temperature as the involved heat is positive, in means that heat was added to increase the temperature.
Best regards.