Answer:
4. The combined volume of the Ar atoms is too large to be negligible compared with the total volume of the container.
Explanation:
Deviations from ideality are due to intermolecular forces and to the nonzero volume of the molecules themselves. At infinite volume, the volume of the molecules themselves is negligible compared with the infinite volume the gas occupies.
However, the volume occupied by the gas molecules must be taken into account. Each <u>molecule does occupy a finite, although small, intrinsic volume.</u>
The non-zero volume of the molecules implies that instead of moving in a given volume V they are limited to doing so in a smaller volume. Thus, the molecules will be closer to each other and repulsive forces will dominate, resulting in greater pressure than the one calculated with the ideal gas law, that means, without considering the volume occupied by the molecules.
Answer:
9
Explanation:
The structure of fluorophore used in the experiments has been drawn in the attachment. And from the drawing counting we can say that there are 9 sp2-hybridized carbon atoms present. Fiuorophores are a fluorescent chemical compound that can re-emit light upon light excitation. Normally used to produce absorbance and emission spectra.
Ksp of AgCl= 1.6×10⁻¹⁰
AgCl=Ag⁺ +Cl⁻
Ksp=[Ag⁺][Cl⁻]
Assume [Ag⁺]=[Cl⁻]=x
Ksp=x²
1.6×10⁻¹⁰=x²
x=0.000012
In FeCl₃:
FeCl₃------>Fe⁺³+ 3Cl⁻
as there is 0.010 M FeCl₃
So there will be ,
[Cl⁻]= 0.030
So
[Ag⁺]=Ksp/[Cl⁻]
=1.6×10⁻¹⁰/0.030
=5.3×10⁻⁹
so solubility of AgCl in FeCl₃ will be 5.3×10⁻⁹.
Answer:
A = 679.2955 ppm
Explanation:
In this case, we already know that 64Cu has a half life of 12.7 hours. The expression to use to calculate the remaining solution is:
A = A₀ e^-kt
This is the expression to use. We have time, A₀, but we do not have k. This value is calculated with the following expression:
k = ln2 / t₁/₂
Replacing the given data we have:
k = ln2 / 12.7
k = 0.0546
Now, let's get the concentration of Cu:
A = 845 e^(-0.0546*4)
A = 845 e^(-0.2183)
A = 845 * 0.8039
A = 679.2955 ppm
This would be the concentration after 4 hours
<span>Answer:
Zn(2+) + 2e(-) -------> Zn
1 mole of Zn is deposited by 2F of electricity ...
so 48.9 mole of Zn will be deposited by 48.9 X 2F = 97.8 F of electricity...
as 1F = 96500 C
so 97.8 F = 97.8 X 96500 = 9437700 C of electricity...</span>