Answer:
The answer is: 51.8 g (86% of serving size)
Explanation:
In order to solve the problem, we have to first determine the number of moles there are in 11.0 g of sucrose. Sucrose has a molecular weight of 342 g (we calculate this from the molar mass of the elements : 12 x 12 g/mol C + 22 x 1 g/mol H + 11 x 16 g/mol O). So, we divide the mass (11.0 g) into the molecular weight of sucrose:
11.0 g sucrose x 1 mol/342 g sucrose= 0.032 mol
We have 0.032 mol of sucrose in a serving of 60 g. But we need less moles (0.0278 mol):
0.032 mol ------------ 60 g serving
0.0278 mol------------ x= 0.0278 mol x 60 g serving/0.032 mol
x= 51.8 g
So, lesser than 1 serving of 60 g must be eaten to consume 0.0278 mol os sucrose. Exactly, 51.8 g (which stands for a 86% of the serving size).
Answer:
Well they didn't transfer any energy when they weren’t touching and it did t produce any energy if it didn’t move. Since they are on top of each other they are causing momentum on each other creating kinetic energy
Explanation:
it´s actually Lithium and fluorine / Magnesium and Chlorine / Beryllium and Nitrogen
Answer:
The correct answer is is option B
b. 93.3 g
Explanation:
SEE COMPLETE QUESTION BELOW
Hydrogen chloride gas can be prepared by the following reaction: 2NaCl(s) + H2SO4(aq) → 2HCl(g) + Na2SO4(s)
How many grams of HCl can be prepared from 2.00 mol H2SO4 and 2.56 mol NaCl?
a. 7.30 g
b. 93.3 g
c. 146 g
d. 150 g
e. 196 g
CHECK THE ATTACHMENT FOR STEP BY STEP EXPLANATION