Answer:
The partial pressure of neon in the vessel was 239 torr.
Explanation:
In all cases involving gas mixtures, the total gas pressure is related to the partial pressures, that is, the pressures of the individual gaseous components of the mixture. Put simply, the partial pressure of a gas is the pressure it exerts on a mixture of gases.
Dalton's law states that the total pressure of a mixture of gases is equal to the sum of the pressures that each gas would exert if it were alone. Then:
PT= P1 + P2 + P3 + P4…+ Pn
where n is the amount of gases present in the mixture.
In this case:
PT=PN₂ + PAr + PHe + PNe
where:
- PT= 987 torr
- PN₂= 44 torr
- PAr= 486 torr
- PHe= 218 torr
- PNe= ?
Replacing:
987 torr= 44 torr + 486 torr + 218 torr + PNe
Solving:
987 torr= 748 torr + PNe
PNe= 987 torr - 748 torr
PNe= 239 torr
<u><em>The partial pressure of neon in the vessel was 239 torr.</em></u>
A significant figure is every symbol that made the number itself.
In this case, the number 40.00 has four figures but only two of them are significant 40, this is because you haven't got any more decimals than the first zero.
If you have a case with zeros in front, you take to the first non zero digits.
For example, 0.071004 you wold express as 0.071 and those 7, and 1 are the significant ones.
1. Answer: C. The objects' temperatures have both changed by the same amount.
Explanation:
An object is said to be in thermal equilibrium when the objects have attained same temperature. Heat transfer from hotter object to colder one in contact takes place until the temperature of the two are equal. It is not necessary that the temperature of both the objects changes by same amount. After attainment of thermal equilibrium, the temperature of the objects stop changing and the tiny particles of the object move at the same rate.
Hence, the objects' temperatures have both changed by the same amount. is not necessarily true for two objects in thermal equilibrium.
2. Answer: C. Objects are made of tiny particles, and their motion depends on the temperature.
Explanation:
Kinetic theory of heat states that the kinetic energy of constituent particles determine the temperature of the object. The statement that best explains this is Objects are made of tiny particles, and their motion depends on the temperature.
ANSWER: B. 20 grams since no matter was added or removed
Hope it helps!
Answer:
The molar mass of the protein is 12982.8 g/mol.
Explanation:
The osmptic pressure is given by:
π=MRT
Where,
M: is molarity of the solution
R: the ideal gas constant (0.0821 L·atm/mol·K)
T: the temperature in kelvins
Hence, we look for molarity:

= =5.584×10⁻³mol/l
As we have 2 ml of solution, we can get the moles quantity:
Moles of protein: 5.584×10⁻³
×2ml=1.117×10⁻⁵mol
Finally, the moles quantity is the division between the mass of the protein and the molar mass of the protein, so:
Moles=Mass/Molar mass
Molar mass= Mass/Moles=
=12982.8 g/mol