Answer: The standard enthalpy of formation of liquid octane is -250.2 kJ/mol
Explanation:
The given balanced chemical reaction is,

First we have to calculate the enthalpy of reaction
.

![\Delta H^o=[n_{O_2}\times \Delta H_f^0_{(O_2)}+n_{H_2O}\times \Delta H_f^0_{(H_2O)}]-[n_{C_8H_{18}}\times \Delta H_f^0_{(C_8H_{18})+n_{O_2}\times \Delta H_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%2Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2O%29%7D%5D-%5Bn_%7BC_8H_%7B18%7D%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28C_8H_%7B18%7D%29%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%5D)
where,
We are given:

Putting values in above equation, we get:
![-1.0940\times 10^4=[(16\times -393.5)+(18\times -285.8)]-[(25\times 0)+(2\times \Delat H_f{C_8H_{18}(l)}]](https://tex.z-dn.net/?f=-1.0940%5Ctimes%2010%5E4%3D%5B%2816%5Ctimes%20-393.5%29%2B%2818%5Ctimes%20-285.8%29%5D-%5B%2825%5Ctimes%200%29%2B%282%5Ctimes%20%5CDelat%20H_f%7BC_8H_%7B18%7D%28l%29%7D%5D)

Thus the standard enthalpy of formation of liquid octane is -250.2 kJ/mol
Answer:
Option C = 4.25 g
Explanation:
Ounce and grams are unit of mass. Ounce is larger unit while gram is smaller unit. The one ounce is consist of 28.35 g or we can say that one ounce is equal to 28.35 g. In order to convert the given ounce value into grams the value is multiply with 28.35 g.
Given data:
Mass = 0.15 ounce
Mass in gram = ?
Solution:
One ounce is equal to 28.35 g, so
0.15 × 28.35 = 4.25 g
Answer and Explanation:
The equation that depicts oxidation of neutral atom A is shown below:

This is because one species is losing electrons due to oxidation. The species possesses positively charged after losing electrons, the magnitude of which is proportional to the number of electrons lost.
The net charge will be equivalent on both sides of the equation, too.
Therefore all other options are not correct
The equation that depicts the decline of neutral atom X is

It is how a cell gains electrons by reduction. The species obtains a negative charge upon possessing electrons, whose magnitude is equivalent to the amount of electrons gained.
The net charge will be equivalent on both sides of the equation, too.
Therefore all other options are not correct
Red #40 is soluble in water while zinc oxide is not.
So the easiest way to separate them is as follows:
1- add water to the mixture until red #40 is dissolved in the water
2- filter to separate the zinc oxide
4- heat the solution of red #40 and water until water evaporates and red#40 remains.