Answer : The number of moles of oxygen present in a sample are 11.3 moles.
Explanation :
The given compound is, 
By the stoichiometry we can say that, 1 mole of of
has 4 moles of CO.
Or we can say that, 1 mole of of
has 1 mole of nickel (Ni), 4 moles of carbon (C) and 4 moles of oxygen.
That means,
Number of moles of carbon = Number of moles of oxygen
As we are given that:
Number of moles of carbon = 11.3 moles
So, number of moles of oxygen = number of moles of carbon = 11.3 moles
Therefore, the number of moles of oxygen present in a sample are 11.3 moles.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
We are given with a compound, Methane (CH4), with a molar
mass of 0.893 mol sample. We are tasked to solve for it's corresponding mass in
g. We need to solve first the molecular weight of Methane, that is
C=12 g/mol
H=1g/mol
CH4= 12 g/mol +1(4) g/mol = 16 g/mol
With 0.893 mol sample, its corresponding mass is
g CH4= 0.893 mol x 16g/mol =14.288 g
Therefore, the mass of methane is 14.288 g
First convert grams to moles:
70.0g *(mole/98.079) = 0.7137mole
Remember that molarity is moles per liter:
0.7137mole *(1/280mL) *(1000mL/L) = 25.5M
1.22 mg is the same as .022 grams. One gram equals 1000 mg. Convert mg to grams by dividing mg by 1000mg/gm. Volume = mass over density. Volume equals .022 grams over .754 grams/cm3 which equals .029 or .03cm3. 2.weight in kg times gravity constant. Weight in newtons equals 10kg times 9.8m/s2 that equals 98 newtons.