Answer:
Maintaining a high starting-material concentration can render this reaction favorable.
Explanation:
A reaction is <em>favorable</em> when <em>ΔG < 0</em> (<em>exergonic</em>). ΔG depends on the temperature and on the reaction of reactants and products as established in the following expression:
ΔG = ΔG° + R.T.lnQ
where,
ΔG° is the standard Gibbs free energy
R is the ideal gas constant
T is the absolute temperature
Q is the reaction quotient
To make ΔG < 0 when ΔG° > 0 we need to make the term R.T.lnQ < 0. Since T is always positive we need lnQ to be negative, what happens when Q < 1. Q < 1 implies the concentration of reactants being greater than the concentration of products, that is, maintaining a high starting-material concentration will make Q < 1.
Explanation:
Formation of crystals starts with formation of ions. After the formation of ions the bond formation takes place between the ions.
Bond making between the ions give rise to formation of cubic unit cell by placing them in such a fashion that it forms a shape of a cube.
These cube are then arranged in a repeated pattern which ultimately leads to the formation of crystals.
Hence, the order of steps:
Step 1 : Formation of ions
Step 2: Formation of ionic bonds
Step 3: Formation of cubes
Step 4: Formation of crystals
In nitrogen-14, there are 7 protons, 7 neutrons, and 7 electrons. The protons and neutrons are in the nucleus, and the electrons are in the electron shells. The atomic number is the number of protons, the mass number is the number of protons AND neutrons, and the atomic mass is the average of the masses of all isotopes.
The ore contains 55.4% calcium phosphate (related to the mineral apatite) so the amount of Ca3(PO4)2 is 55.4%x=1000g so x=1000/0.554= 1.805kg. Now for the % of P in this amount of calcium phosphate, use all the masses of the elements in Ca3PO4= Ca=40.078 x 3= 120.23 and (PO4)2= (30.974+64)2=189.95 (NB oxygen is 16 mass x 4 =64) so the total mass is 310.2 and we have 61.95 of P (Pmass x 2) so 61.95/3102.= 0.19 or 19% P. So of the 1.805 x 0.19= 0.34kg of phosphorus.
Ferromagnesian silicate minerals (i looked it up)