Answer : The correct option is, (c) use of a mobile and a stationary phase.
Explanation :
Chromatography : It is a separation process or technique of a mixture in which a mixture is distributed between the two phases at different rates, one of which is stationary phase and another is mobile phase.
Mobile phase : The mixture is dissolved in a solution is known as mobile phase.
Stationary phase : It is an adsorbent medium and It is a solid, liquid or gel that remains immovable when a liquid or a gas moves over the surface of adsorbent. It remains stationary.
Hence, a characteristic feature of any form of chromatography is the use of a mobile and a stationary phase.
Based on Pauling Scale, electro negativity of Cl = 3.2, Na = 0.9 and H = 2.1
Thus, Electronegativity difference in

= 3.2 -3.2 = 0
Electronegativity difference in NaCl = 3.2-0.9 = 2.3
Similarly, Electronegativity difference in HCl = 3.2 - 2.1 = 1.1
Thus, among the listed molecules following is the decreasing order of electronegativity difference: NaCl> HCl >
Answer:
0.1 M
Explanation:
The overall balanced reaction equation for the process is;
IO3^- (aq)+ 6H^+(aq) + 6S2O3^2-(aq) → I-(aq) + 3S4O6^2-(aq) + 3H2O(l)
Generally, we must note that;
1 mol of IO3^- require 6 moles of S2O3^2-
Thus;
n (iodate) = n(thiosulfate)/6
C(iodate) x V(iodate) = C(thiosulfate) x V(thiosulfate)/6
Concentration of iodate C(iodate)= 0.0100 M
Volume of iodate= V(iodate)= 26.34 ml
Concentration of thiosulphate= C(thiosulfate)= the unknown
Volume of thiosulphate=V(thiosulfate)= 15.51 ml
Hence;
C(iodate) x V(iodate) × 6/V(thiosulfate) = C(thiosulfate)
0.0100 M × 26.34 ml × 6/15.51 ml = 0.1 M
In given data:
maximum absorption wavelength λ = 580 nm = 580 x 10⁻⁹ m
write the equation to find the crystal field splitting energy:
E = hC / λ
Here, E is the crystal field splitting energy, h = 6.63 x 10⁻³⁴ J.sec is Planck's constant and C = 3 x 10⁸ m/sec is speed of light.
substitute in the equation above:
E = (6.64 x 10⁻³⁴ x 3 x 10⁸) / (580 x 10⁻⁹) = 3.43 x 10⁻¹⁹J
This crystal field splitting energy is for 1 ion.
Number of atoms in one mole, NA = 6.023 x 10²³
to calculate the crystal field splitting energy for one mole:
E(total) = E x NA
= (3.43 x 10⁻¹⁹) x (6.023 x 10²³) = 206 kJ/ mole
Answer:
MCl₂
Explanation:
The formula for boiling point elevation can be used to find x. The "complete dissociation" means there will be an ion of M and x ions of Cl in the solution. The number of moles of solute will be 30.2 grams divided by the molecular weight of MClx, where x is the variable we're trying to find.

Then the formula for the salt is MCl₂.