<h3>
Answer:</h3>
0.699 mole CaCl₂
<h3>
Explanation:</h3>
To get the number of moles we use the Avogadro's number.
Avogadro's number is 6.022 x 10^23.
But, 1 mole of a compound contains 6.022 x 10^23 molecules
In this case;
we are given 4.21 × 10^23 molecules of CaCl₂
Therefore, to get the number of moles
Moles = Number of molecules ÷ Avogadro's constant
= 4.21 × 10^23 molecules ÷ 6.022 x 10^23 molecules/mole
= 0.699 mole CaCl₂
Hence, the number of moles is 0.699 mole of CaCl₂
Hi!
The radical bromination reaction of C₆H₅CH₂CH₃ is performed through a mechanism in which radical reactions are involved. This compound is an alkylbenzene compound, and the carbon that is more reactive towards radical bromination is the carbon bonded to the aromatic ring because in the reaction mechanism the intermediaries are stabilized by resonance in the aromatic ring.
A terminal substitution will not occur because substitution there will not be stabilized by resonance. The compound that will be formed in this reaction would be:
C₆H₅CH₂CH₃ + Br₂ → C₆H₅CH₂(Br)CH₃ + HBr
<span>A 50-gram sample with a half-life of 12 days will have a remaining mass of 25 grams after its 12-day half-life.
Every cycle of a half-life, the sample will lose half of its mass, so if the half-life, itself, is 12 days and the time period passing is 12 days, one half-life has passed and the material will be halved.</span>
Answer:
The symbol is the right answer.
Explanation:
The “ Symbol” is the correct answer because chemist uses the letters of the alphabet to denote the element. For instance, the element oxygen is denoted by the letter of the alphabet “O”, the hydrogen is denoted by the letter of alphabet “H”, Boron is denoted by the letter of alphabet “B”, etc. Here these are the examples that use one letter but there are other elements that use more than 1 letter as the symbol. For example, the Chlorine is represented by the Cl.
Answer is 74,844 calories