The First Ionization energy of Nitrogen is greater (Not smaller)than that of Phosphorous. This is because going down the group (N and P are in same group) the number of shells increases, the distance of valence electrons from Nucleus increases and hence due to less interaction between nucleus and valence electrons it becomes easy to knock out the electron.
<span>The second ionization energy of Na is larger than that of Mg because after first loss of electron Na has gained Noble Gas Configuration (Stable Configuration) and now requires greater energy to loose both second electron and Noble Gas Configuration. While Mg after second ionization attains Noble Gas Configuration hence it prices less energy.</span>
The more numbers after the decimal point there are, the more precise the instrument which recorded it is. For example, if one instrument during seismic activity records that the magnitude of the earthquake was 2.3, and another instrument recorded that it was 2.3645, the second instrument would have shown to be more precise.
Pressure is 5.7 atm
<u>Explanation:</u>
P1 = Standard pressure = 1 atm
P2 = ?
V1 = Volume = 10L
V2= 2.4L
T1 = 0°C + 273 K = 273 K
T2 = 100°C + 273 K = 373 K
We have to find the pressure of the gas, by using the gas formula as,

P2 can be found by rewriting the above expression as,

Plugin the above values as,

The H3O+ in a 0.050M solution of Ba(OH)2 is calculated as below
write the equation for the dissociation of Ba(OH)2
Ba(OH)2 = Ba^2+ +2OH^-
calculate the OH- concentration
by use of mole ratio between Ba(OH)2 to OH^- which is 1:2 the concentration of OH = 0.050 x2 = 0.1 M
by use of the formula ( H3O+)(OH-) = 1 x10 ^-14
by making H3O+ the subject of the formula
H3O+ = 1 x10^-14/ OH-
substitute for OH-
H3O+ = (1 x10^-14 )/0.1
= 1 x10^-3 M
Answer: 3.36 L of ammonia gas
Explanation:
The balanced chemical reaction is:
According to stoichiometry :
3 moles of
produce = 2 moles of
Thus 0.75 moles of
will producee=
of
But as percent yield is 30 %, amount of ammonia produced = 
According to ideal gas equation:
P = pressure = 1 atm
V = Volume = ?
n = number of moles = 0.15
R = gas constant =
T =temperature =
Thus 3.36 L of ammonia gas is obtained by reacting 0.75 moles of hydrogen with excess nitrogen.