The correct values I believe would be a=1 b=-2 and c=-3.
You did not include the questions.
I did some research and found the questions:
<span>
What is the mass of 1 mole of pennies?
How many moles of pennies have a mass equal to the mass of the moon?
Solutions:
1) mass of 1 mole of pennies
Data: mass of 1 penny = 2.50 g
1 mole = 6.022 * 10^ 23 units
Proportion:
1 penny 6.022 * 10^23 penny
-------------- = ----------------------------
2.50 g x
Solve: x = 6.022 * 10^23 penny * 2.50g / 1 penny = 15.055* 10^23
Since 2.50 has 3 significant figures, the answer must use 3 significant figures => x = 15.1 * 10^ 23 g = 1.51 * 10^24 g
Answer: 1 mol of pennies have a mass of 1.51 * 10^24 g
2) How many moles of pennies have a mass equal to the same mass of the Moon
Convert the mass of the Moon grams: 7.35 * 10^22 kg = 7.35 * 10^ 25 g
1 mol x
---------------------- = ----------------------
1.51 * 10^ 24g 7.35 * 10^ 25 g
=> x = 7.35 * 10^ 25 g * 1 mol / (1.51 * 10^24 g)= 48.7 mol
Answer: 48.7 mol
</span>
Answer:
36
Explanation:
Since the sample was undiluted the number of colonies is the number that grew on the nutrient agar which is 36 colonies. If it was diluted for example let say 0.1 ml from a dilution in which 1 ml of the sample was added to 9 ml of water, and it grew colonies then 0.1 ml yielded 6 colonies, 1 ml of the diluted sample will yield 60 colonies and 10 ml will have 600 colonies and therefore the 1 ml undiluted sample will have 600 colonies.
Answer:

Explanation:
Hello,
In this case, the undergoing chemical reaction is:

Next, we identify the limiting reactant by computing the moles of magnesium oxide yielded by 3.86 g of magnesium and 155 mL of oxygen at the given conditions via their 2:1:2 mole ratios and the ideal gas equation:

It means that the limiting reactant is the oxygen as it yields the smallest amount of magnesium oxide. Next, we compute the mass of magnesium consumed the oxygen only:

Thus, the mass in excess is:

Regards!
Answer:

Explanation:
Hello,
In this case, since iron (III) chloride (FeCl3) and barium chloride (BaCl2) are both chloride-containing compounds, we can compute the moles of chloride from each salt, considering the concentration and volume of the given solutions, and using the mole ratio that is 1:3 and 1:2 for the compound to chlorine:

So the total mole of chloride ions:

And the total volume by adding the volume of each solution in L:

Finally, the molarity turns out:

Best regards.