Answer:
17.57kg of
and its percentage yield is 81.0%
Explanation:
Through the reaction you can get the theoretical amount of
that must be produced.

If the amount obtained is less than the theoretical amount, it means that the initial sample was not 100% pure. Now the actual amount obtained is compared with the theoretical amount using a percentage
=81.0%
Answer:
<h2>
The equilibrium constant Kc for this reaction is 19.4760</h2>
Explanation:
The volume of vessel used=
ml
Initial moles of NO=
moles
Initial moles of H2=
moles
Concentration of NO at equilibrium=
M

Moles of NO at equilibrium= 
=
moles
2H2 (g) + 2NO(g) <—> 2H2O (g) + N2 (g)
<u>Initial</u> :1.3*10^-2 2.6*10^-2 0 0 moles
<u>Equilibrium</u>:1.3*10^-2 - x 2.6*10^-2-x x x/2 moles
∴
⇒
![Kc=\frac{[H2O]^2[N2]}{[H2]^2[NO]^2} (volume of vesselin litre)](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH2O%5D%5E2%5BN2%5D%7D%7B%5BH2%5D%5E2%5BNO%5D%5E2%7D%20%28volume%20of%20vesselin%20litre%29)
<u>Equilibrium</u>:0.31*10^-2 1.61*10^-2 0.99*10^-2 0.495*10^-2 moles
⇒
⇒
Answer : The density of an object is, 
Solution : Given,
Mass of an object = 60 g
Volume of an object = 
Formula used :

Now put all the given values in this formula, we get the density of an object.

Therefore, the density of an object is, 
d. When aluminum-28 undergoes beta decay, silicon-28 is produced.
Explanation:
When the nuclei of aluminium-28 decays, it produces silicon- 28:
Aluminium ²⁸₁₃Al
Silicon 28 ²⁸₁₄Si
beta particle ⁰₋₁
²⁸₁₃Al → ²⁸₁₄Si + ⁰₋₁
This way, the mass and atomic number are conserved.
Conservation of mass number:
28 = 28 + 0, 28 = 28
13 = 14 -1 , 13 = 13
Learn more:
Balancing nuclear equations brainly.com/question/10094982
#learnwithBrainly
The temperature will change from 100K to 173.87 K
calculation
by use of law that is V1/T1=V2/T2
V1=3.75 L
T1=100k
V2=6.53 L
T2=?
make T2 the subject of the formula
T2=(V2 xT1)V1
=6.52 x100/3.75=173.87K