Answer:
Explanation:
The half-life of K-40 (1.3 billion years) is the time it takes for half of it to decay.
After one half-life, half (50 %) of the original amount will remain.
After a second half-life, half of that amount (25 %) will remain, and so on.
We can construct a table as follows:
No. of Fraction
<u>half-lives</u> <u> t/yr </u> <u>Remaining</u>
0 0 1
1 1.3 billion ½
2 2.6 ¼
3 3.9 ⅛
We see that after 2 half-lives, ¼ of the original mass remains.
Conversely, if two half-lives have passed, the original mass must have been four times the mass we have now.
Original mass = 4 × 2.10 g = 
The product of a reaction between these two elements is
.
Explanation:
The oxidation state of an ion in a compound is equal to its charge.
The aluminum having a charge of +3 because oxidation state is +3
The oxide is having charge of -2
The product of these reactants will produce a chemical compound.
The compound formed is
i.e Aluminium oxide. The compound while getting formed will share the charge and cation A+ will have the charge of anion and anion will have the charge of cation. This will result in a compound as there should be a neutral charge on the compound formed.
The <em>+</em><em>3 charge of the cation Al+ will go to anion oxide O2- and the charge of anion -2 will go with cation Al+. </em>
<em />
11.2L/22.4L (STP value) x 1 mol of CH4 x 16.04 g of CH4 = 8.2 g
I'm not 100% sure on this, but I would go with C) NaCl.
NaCl is a salt, and that is used to melt the ice on the roads. Hope this helps!
Volume = Mass / Density
Volume = 540g / 2.70 g/ml
Volume = 200 ml