Reacting 1-chloro-2-ethylcyclohexene with hydrogen gas using a platinum catalyst would give a product of 1-chloro-2-ethylcyclohexane.
Hydrogen gas is a reducing agent, which in this reaction, simply mean that the alkene double bond in the cyclohexene will disappear because one of the two bonds forming the double bond (in the alkene) will be connected to a hydrogen atom. The platinum catalyst is necessary to allow the reaction to proceed at a much lower (activation) energy than would have been required.
A branched alkane has HIGHER boiling point relative to the isomeric linear alkane. There are STRONGER london force interactions in the branched alkane.
:-) ;-)
Instrumental methods of analysis rely on machines.The visualization of single molecules, single biological cells, biological tissues and nanomaterials is very important and attractive approach in analytical science.
There are several different types of instrumental analysis. Some are suitable for detecting and identifying elements, while others are better suited to compounds. In general, instrumental methods of analysis are:
-Fast
-Accurate (they reliably identify elements and compounds)
-Sensitive (they can detect very small amounts of a substance in a small amount of sample)
A common factor is low pressure system.
Answer:
2.4 ×10^24 molecules of the herbicide.
Explanation:
We must first obtain the molar mass of the compound as follows;
C3H8NO5P= [3(12) + 8(1) + 14 +5(16) +31] = [36 + 8 + 14 + 80 + 31]= 169 gmol-1
We know that one mole of a compound contains the Avogadro's number of molecules.
Hence;
169 g of the herbicide contains 6.02×10^23 molecules
Therefore 669.1 g of the herbicide contains 669.1 × 6.02×10^23/ 169 = 2.4 ×10^24 molecules of the herbicide.