It’s the BOA not the dog or kangaroo
Answer:
Wavelength of this beam of light:
.
Explanation:
The speed of light in vacuum is approximately
.
Light behaves like a wave. The wavelength of a wave is equal to the distance that it travels (in the given medium) in each period of oscillation.
On the other hand, the frequency of a wave is the number of periods in unit time.
means one oscillation per second. The frequency of this particular wave is
. In other words, there are
oscillations in each second.
The period of oscillation will be equal to
.
In that period of time, a beam of light in vacuum would have traveled
.
In other words, if this beam of light of frequency
is in vacuum, its wavelength will be equal to
.
M=D*V
D=620 g/cm³
V=75 cm³
m= 620 g/cm³ * 75 cm³=46500 g
m=46500g
Answer:
The new molar concentration of CO at equilibrium will be :[CO]=1.16 M.
Explanation:
Equilibrium concentration of all reactant and product:
![[CO_2] = 0.24 M, [H_2] = 0.24 M, [H_2O] = 0.48 M, [CO] = 0.48 M](https://tex.z-dn.net/?f=%5BCO_2%5D%20%3D%200.24%20M%2C%20%5BH_2%5D%20%3D%200.24%20M%2C%20%5BH_2O%5D%20%3D%200.48%20M%2C%20%5BCO%5D%20%3D%200.48%20M)
Equilibrium constant of the reaction :
![K=\frac{[H_2O][CO]}{[CO_2][H_2]}=\frac{0.48 M\times 0.48 M}{0.24 M\times 0.24 M}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BH_2O%5D%5BCO%5D%7D%7B%5BCO_2%5D%5BH_2%5D%7D%3D%5Cfrac%7B0.48%20M%5Ctimes%200.48%20M%7D%7B0.24%20M%5Ctimes%200.24%20M%7D)
K = 4

Concentration at eq'm:
0.24 M 0.24 M 0.48 M 0.48 M
After addition of 0.34 moles per liter of
and
are added.
(0.24+0.34) M (0.24+0.34) M (0.48+x)M (0.48+x)M
Equilibrium constant of the reaction after addition of more carbon dioxide and water:


Solving for x: x = 0.68
The new molar concentration of CO at equilibrium will be:
[CO]= (0.48+x)M = (0.48+0.68 )M = 1.16 M
A.S OLOS kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkll