Option C: I and II only.
The atoms have subparticles and the isotops are atoms of the same element that differ in the number of neutrons.
Answer:
Each molecule contains one atom of A and one atom of B. The reaction does not use all of the atoms to form compounds.
A + B ⟶ Product
Particles: 6 8 6
If six A atoms form six product molecules, each molecule can contain only one A atom.
The formula of the product is ABₙ.
If n = 1, we need six atoms of B.
If n = 2, we need 12 atoms of B. However, we have only eight atoms of B, so the formula of the product must be AB.
Thus, 6A + 6B ⟶ 6AB, with two B atoms left over.
Explanation:
Credit goes to @znk
Hope it helps you :))
The oxidation state of potassium ion K = +1
The oxidation state of oxygen ion O = -2
So, the oxidation state of O2 is = -2 x 2 = -4
Since, KBrO2 is neutral so,
(+1) + (x) + (-4) = Zero
-3 + X = Zero
So, X = +3
The oxidation state of individual bromine atom in KBrO2 is +3
Answer:
D = 28.2g
Explanation:
Initial temperature of metal (T1) = 155°C
Initial Temperature of calorimeter (T2) = 18.7°C
Final temperature of solution (T3) = 26.4°C
Specific heat capacity of water (C2) = 4.184J/g°C
Specific heat capacity of metal (C1) = 0.444J/g°C
Volume of water = 50.0mL
Assuming no heat loss
Heat energy lost by metal = heat energy gain by water + calorimeter
Heat energy (Q) = MC∇T
M = mass
C = specific heat capacity
∇T = change in temperature
Mass of metal = M1
Mass of water = M2
Density = mass / volume
Mass = density * volume
Density of water = 1g/mL
Mass(M2) = 1 * 50
Mass = 50g
Heat loss by the metal = heat gain by water + calorimeter
M1C1(T1 - T3) = M2C2(T3 - T2)
M1 * 0.444 * (155 - 26.4) = 50 * 4.184 * (26.4 - 18.7)
0.444M1 * 128.6 = 209.2 * 7.7
57.0984M1 = 1610.84
M1 = 1610.84 / 57.0984
M1 = 28.21g
The mass of the metal is 28.21g
Answer: B) Crash 2; the force on the cart was stronger in this crash, so the force on the skateboard was also stronger.
Explanation: