Answer:
Explanation:
q= mc theta
where,
Q = heat gained
m = mass of the substance = 670g
c = heat capacity of water= 4.1 J/g°C
theta =Change in temperature=(
66-25.7)
Now put all the given values in the above formula, we get the amount of heat needed.
q= mctheta
q=670*4.1*(66-25.7)
=670*4.1*40.3
=110704.1
First, let's write down the balanced chemical reaction between the given reactants:
NO₂ + NO → N₂O + O₂
The Lewis structure of the main product is shown in the attached picture. To determine the formal charge of each element, the formula is as follows:
Formal Charge = Valence electrons - Non-bonding valence electrons - (Bonding electrons/2)
For the leftmost N:
Formal charge = 5 - 2 - 6/2 = 0
For the middle N:
Formal charge = 5 - 0 - 8/2 = 1
For O:
Formal charge = 6 - 6 - 2/2 = -1
<span>The higher the molar mass is of the gas, the greater the density.
Cl2 is the answer</span>
Answer:
the enthalpy of the second intermediate equation is halved and has its sign changed.
Explanation:
Let us take a look at the first and second intermediate reactions as well as the overall reaction equation for the process under review;
First reaction;
Ca (s) + CO₂ (g) + ½O₂ (g) → CaCO₃ (s) ΔH₁ = -812.8 kJ
Second reaction;
2Ca (s) + O₂ (g) → 2CaO (s) ΔH₂ = -1269 kJ
Hence the overall equation is now;
CaO (s) + CO₂ (g) → CaCO₃ (s) ΔH = ?
According to the Hess law of constant heat summation, the enthalpy of the overall reaction is supposed to be obtained as a sum of the enthalpy of both reactions but this will not give the enthalpy of the overall reaction in this case. The enthalpy of the overall reaction is rather obtained by halving the enthalpy of the second intermediate reaction and reversing its sign before taking the sum as shown below;
Enthalpy of Intermediate reaction 1 + ½(- Enthalpy of Intermediate reaction 2) = Enthalpy of Overall reaction