Answer:
We have to add 2.30 L of oxygen gas
Explanation:
Step 1: Data given
Initial volume = 4.00 L
Number of moles oxygen gas= 0.864 moles
Temperature = constant
Number of moles of oxygen gas increased to 1.36 moles
Step 2: Calculate new volume
V1/n1 = V2/n2
⇒V1 = the initial volume of the vessel = 4.00 L
⇒n1 = the initial number of moles oxygen gas = 0.864 moles
⇒V2 = the nex volume of the vessel
⇒n2 = the increased number of moles oxygen gas = 1.36 moles
4.00L / 0.864 moles = V2 / 1.36 moles
V2 = 6.30 L
The new volume is 6.30 L
Step 3: Calculate the amount of oxygen gas we have to add
6.30 - 4.00 = 2.30 L
We have to add 2.30 L of oxygen gas
Explanation:
It is given that lattice energy is -701 kJ/mol.
Whereas it is known that realtion between lattice energy and radius is as follows.
Lattice energy 
where,
= +2, and
= -2
Therefore, lattice energy of AB = 
= 
= -2804 kJ/mol
Thus, we can conclude that lattice energy of the salt ABAB is -2804 kJ/mol.
Answer:
The dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
Explanation:

The rate of the reaction ;
![R=k[C_4H_6]^x](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5Ex)
As given in the question , that graph of time verses
was linear but plots of
or
was curved.
Generally:
Graph of time verses
for zero order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with positive slope.
So, the dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).
The heavy player hits the lighter player with more force.
The lighter player gets hurt more after the collision
Explanation:
A heavy player will hit a light player with more force and eventually, the lighter player will get hurt the more after the collision.
Force is a function of mass and acceleration of a body;
Force = mass x acceleration
We can see that the more the mass and acceleration of a body, the more the force they can exert.
It is obvious that the mass of the heavier player is more than that of light player. Therefore, it exerts more force on the other one.
Also, the lighter player will get hurt the more after collision. The momentum with which the heavier football player hits the light one is very great. After the collision, the light footballer will most definitely change acceleration and direction of traveling.
learn more:
Momentum brainly.com/question/2990238
#learnwithBrainly