Answer: 0.0164 molar concentration of hydrochloric acid in the resulting solution.
Explanation:
1) Molarity of 0.250 L HCl solution : 0.0328 M

Moles of HCl in 0.250 L solution = 0.0082 moles
2) Molarity of 0.100 L NaOH solution : 0.0245 M

Moles of NaOH in 0.100 L solution = 0.00245 moles
3) Concentration of hydrochloric acid in the resulting solution.
0.00245 moles of NaOH will neutralize 0.00245 moles of HCl out of 0.0082 moles of HCl.
Now the new volume of the solution = 0.100 L +0.250 L = 0.350 L
Moles of HCl left un-neutralized = 0.0082 moles - 0.00245 moles = 0.00575 moles

Molarity of HCl left un-neutralized :
0.0164 molar concentration of hydrochloric acid in the resulting solution.
Answer:
the reducing flame also called the carburizing flame.
Explanation:
because it gets the oxides of the unknown salts
Answer is "B - 700,000".<span>
<span>Kinetic energy of a single particle (atom or molecule)<span> is directly proportional to its
temperature according to the following equation.</span></span>
KE = (3kT)/2
<span>Where </span>KE<span> is the
kinetic energy of a single atom/molecule (</span>J<span>), </span>k<span> is the Boltzmann
constant (</span>1.381 × 10</span>⁻²³ J/K<span>) and </span>T<span> is the temperature (</span>K<span>) </span><span>
When temperature increases, then the kinetic
energy increases.
<span>If kinetic
energy of atoms increases, then there will be more motions which create many
collisions.</span></span>
Answer: The oxidation state of selenium in SeO3 is +6
Explanation:
SeO3 is the chemical formula for selenium trioxide.
- The oxidation state of SeO3 = 0 (since it is stable and with no charge)
- the oxidation number of oxygen (O) IN SeO3 is -2
- the oxidation state of selenium in SeO3 = Z (let unknown value be Z)
Hence, SeO3 = 0
Z + (-2 x 3) = 0
Z + (-6) = 0
Z - 6 = 0
Z = 0 + 6
Z = +6
Thus, the oxidation state of selenium in SeO3 is +6
The value of X is 10 hence the formula of unknown hydrate sodium sulfate is NaSO4.10 H20
calculation
step 1:find the moles of NaSO4 and the moles of H2O
moles= mass/molar mass
moles of Na2SO4=1.42÷142=0.01 moles
moles of H20= mass of H2O/molar mass of H2O
mass of H2O= 3.22-1.42=1.8g
mole of H2O is therefore 1.8÷18=0.1 moles
step 2: find the mole ratio by dividing each mole by smallest number of mole (0.01)
that is Na2So4= 0.01/0.01 =1
H2O= 0.1/0.01=10